keeeeenw commited on
Commit
4dc4e8a
·
verified ·
1 Parent(s): 0a6e6cb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -51
README.md CHANGED
@@ -17,57 +17,6 @@ Some reasons for using these checkpoints:
17
  - You can use them starting point to train your own small language model.
18
  - More interestingly, you can prob into the learning process of these models to understand how LLM learns to mimic human.
19
 
20
- # Evaluation results
21
-
22
- **Note** this does not represent the final performance of the model and should only be served as a reference for my training progress.
23
- ```
24
- checkpoint: step-00088000
25
-
26
- | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
27
- |-------------|------:|------|-----:|--------|-----:|---|-----:|
28
- |piqa | 1|none | 0|acc |0.6202|± |0.0113|
29
- | | |none | 0|acc_norm|0.6213|± |0.0113|
30
- |boolq | 2|none | 0|acc |0.5875|± |0.0086|
31
- |arc_challenge| 1|none | 0|acc |0.1980|± |0.0116|
32
- | | |none | 0|acc_norm|0.2201|± |0.0121|
33
- |arc_easy | 1|none | 0|acc |0.4373|± |0.0102|
34
- | | |none | 0|acc_norm|0.3935|± |0.0100|
35
- |winogrande | 1|none | 0|acc |0.5004|± |0.0141|
36
- |openbookqa | 1|none | 0|acc |0.1760|± |0.0170|
37
- | | |none | 0|acc_norm|0.2680|± |0.0198|
38
- |hellaswag | 1|none | 0|acc |0.2893|± |0.0045|
39
- | | |none | 0|acc_norm|0.3125|± |0.0046|
40
- ```
41
-
42
- You can use the following script to reproduce the results (assuming you have installed litgpt)
43
- ```
44
- MODEL_NAME="step-00088000"
45
- MODEL_OUTPUT_ROOT="MicroLlamaV2-VastAI-Checkpoints/out/pretrain/micro-llama-v2"
46
- MODEL_OUTPUT_REL="${MODEL_OUTPUT_ROOT}/${MODEL_NAME}"
47
-
48
- # HuggingFace
49
- huggingface-cli download keeeeenw/MicroLlama2-checkpoints ${MODEL_NAME}/lit_model.pth --local-dir checkpoints/${MODEL_OUTPUT_ROOT}/
50
- huggingface-cli download keeeeenw/MicroLlama2-checkpoints ${MODEL_NAME}/generation_config.json --local-dir checkpoints/${MODEL_OUTPUT_ROOT}/
51
- huggingface-cli download keeeeenw/MicroLlama2-checkpoints ${MODEL_NAME}/hyperparameters.yaml --local-dir checkpoints/${MODEL_OUTPUT_ROOT}/
52
- huggingface-cli download keeeeenw/MicroLlama2-checkpoints ${MODEL_NAME}/model_config.yaml --local-dir checkpoints/${MODEL_OUTPUT_ROOT}/
53
- huggingface-cli download keeeeenw/MicroLlama2-checkpoints ${MODEL_NAME}/tokenizer.json --local-dir checkpoints/${MODEL_OUTPUT_ROOT}/
54
- huggingface-cli download keeeeenw/MicroLlama2-checkpoints ${MODEL_NAME}/tokenizer_config.json --local-dir checkpoints/${MODEL_OUTPUT_ROOT}/
55
-
56
- # Copy config, see "caveat" below
57
- cp -r <local_path>/config.json checkpoints/${MODEL_OUTPUT_REL}/
58
-
59
- # AWS
60
- # aws s3 cp s3://microllama-v2/checkpoints/out/pretrain/micro-llama-v2/${MODEL_NAME} checkpoints/${MODEL_OUTPUT_REL} --recursive
61
-
62
- litgpt evaluate \
63
- ${MODEL_OUTPUT_REL} \
64
- --tasks "hellaswag,openbookqa,winogrande,arc_easy,arc_challenge,boolq,piqa" \
65
- --device cuda:0 \
66
- --batch_size 16
67
- ```
68
- **Caveat**: for some reason the auto generated config.json for the model in the checkpoint is incorrect, you will need to replace it with https://huggingface.co/keeeeenw/MicroLlama2-checkpoints/blob/main/config.json
69
- to resolve the evaluation error.
70
-
71
  # How to use these checkpoints
72
 
73
  These checkpoints are compatible with [litgpt](https://github.com/Lightning-AI/litgpt) with slight modifications (see section below).
@@ -182,5 +131,54 @@ litgpt pretrain \
182
 
183
  You will lose the index to the training dataset as well as other hyperparams such as learning rate but this allows you to start your pre-training quickly.
184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186
 
 
17
  - You can use them starting point to train your own small language model.
18
  - More interestingly, you can prob into the learning process of these models to understand how LLM learns to mimic human.
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  # How to use these checkpoints
21
 
22
  These checkpoints are compatible with [litgpt](https://github.com/Lightning-AI/litgpt) with slight modifications (see section below).
 
131
 
132
  You will lose the index to the training dataset as well as other hyperparams such as learning rate but this allows you to start your pre-training quickly.
133
 
134
+ # Evaluation results
135
+
136
+ **Note** this does not represent the final performance of the model and should only be served as a reference for my training progress.
137
+ ```
138
+ checkpoint: step-00088000
139
+
140
+ | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
141
+ |-------------|------:|------|-----:|--------|-----:|---|-----:|
142
+ |piqa | 1|none | 0|acc |0.6202|± |0.0113|
143
+ | | |none | 0|acc_norm|0.6213|± |0.0113|
144
+ |boolq | 2|none | 0|acc |0.5875|± |0.0086|
145
+ |arc_challenge| 1|none | 0|acc |0.1980|± |0.0116|
146
+ | | |none | 0|acc_norm|0.2201|± |0.0121|
147
+ |arc_easy | 1|none | 0|acc |0.4373|± |0.0102|
148
+ | | |none | 0|acc_norm|0.3935|± |0.0100|
149
+ |winogrande | 1|none | 0|acc |0.5004|± |0.0141|
150
+ |openbookqa | 1|none | 0|acc |0.1760|± |0.0170|
151
+ | | |none | 0|acc_norm|0.2680|± |0.0198|
152
+ |hellaswag | 1|none | 0|acc |0.2893|± |0.0045|
153
+ | | |none | 0|acc_norm|0.3125|± |0.0046|
154
+ ```
155
+
156
+ You can use the following script to reproduce the results (assuming you have installed litgpt)
157
+ ```
158
+ MODEL_NAME="step-00088000"
159
+ MODEL_OUTPUT_ROOT="MicroLlamaV2-VastAI-Checkpoints/out/pretrain/micro-llama-v2"
160
+ MODEL_OUTPUT_REL="${MODEL_OUTPUT_ROOT}/${MODEL_NAME}"
161
+
162
+ # HuggingFace
163
+ huggingface-cli download keeeeenw/MicroLlama2-checkpoints ${MODEL_NAME}/lit_model.pth --local-dir checkpoints/${MODEL_OUTPUT_ROOT}/
164
+ huggingface-cli download keeeeenw/MicroLlama2-checkpoints ${MODEL_NAME}/generation_config.json --local-dir checkpoints/${MODEL_OUTPUT_ROOT}/
165
+ huggingface-cli download keeeeenw/MicroLlama2-checkpoints ${MODEL_NAME}/hyperparameters.yaml --local-dir checkpoints/${MODEL_OUTPUT_ROOT}/
166
+ huggingface-cli download keeeeenw/MicroLlama2-checkpoints ${MODEL_NAME}/model_config.yaml --local-dir checkpoints/${MODEL_OUTPUT_ROOT}/
167
+ huggingface-cli download keeeeenw/MicroLlama2-checkpoints ${MODEL_NAME}/tokenizer.json --local-dir checkpoints/${MODEL_OUTPUT_ROOT}/
168
+ huggingface-cli download keeeeenw/MicroLlama2-checkpoints ${MODEL_NAME}/tokenizer_config.json --local-dir checkpoints/${MODEL_OUTPUT_ROOT}/
169
 
170
+ # Copy config, see "caveat" below
171
+ cp -r <local_path>/config.json checkpoints/${MODEL_OUTPUT_REL}/
172
+
173
+ # AWS
174
+ # aws s3 cp s3://microllama-v2/checkpoints/out/pretrain/micro-llama-v2/${MODEL_NAME} checkpoints/${MODEL_OUTPUT_REL} --recursive
175
+
176
+ litgpt evaluate \
177
+ ${MODEL_OUTPUT_REL} \
178
+ --tasks "hellaswag,openbookqa,winogrande,arc_easy,arc_challenge,boolq,piqa" \
179
+ --device cuda:0 \
180
+ --batch_size 16
181
+ ```
182
+ **Caveat**: for some reason the auto generated config.json for the model in the checkpoint is incorrect, you will need to replace it with https://huggingface.co/keeeeenw/MicroLlama2-checkpoints/blob/main/config.json
183
+ to resolve the evaluation error.
184