--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - common_voice_16_1 metrics: - wer model-index: - name: output1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_1 type: common_voice_16_1 config: ko split: test args: ko metrics: - name: Wer type: wer value: 140.13953488372093 --- # output1 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the common_voice_16_1 dataset. It achieves the following results on the evaluation set: - Loss: 1.0385 - Wer: 140.1395 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0034 | 25.0 | 1000 | 0.9055 | 100.2326 | | 0.001 | 50.0 | 2000 | 0.9852 | 113.7674 | | 0.0005 | 75.0 | 3000 | 1.0243 | 139.9070 | | 0.0004 | 100.0 | 4000 | 1.0385 | 140.1395 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.1+cpu - Datasets 3.0.0 - Tokenizers 0.19.1