kennethgoodman
commited on
Commit
·
3a1cb2c
1
Parent(s):
4c8ef26
Upload PPO FrozenLake-v1 trained agent
Browse files- FrozenLake-v1-version_0_0_2.zip +3 -0
- FrozenLake-v1-version_0_0_2/_stable_baselines3_version +1 -0
- FrozenLake-v1-version_0_0_2/data +89 -0
- FrozenLake-v1-version_0_0_2/policy.optimizer.pth +3 -0
- FrozenLake-v1-version_0_0_2/policy.pth +3 -0
- FrozenLake-v1-version_0_0_2/pytorch_variables.pth +3 -0
- FrozenLake-v1-version_0_0_2/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- results.json +1 -0
FrozenLake-v1-version_0_0_2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c064605462b6df61485fb18e89b29387fc80eee8f287bf26de4b5597994a7fa
|
3 |
+
size 156700
|
FrozenLake-v1-version_0_0_2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
FrozenLake-v1-version_0_0_2/data
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d632a41f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d632a4280>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d632a4310>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d632a43a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2d632a4430>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2d632a44c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d632a4550>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2d632a45e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d632a4670>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d632a4700>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d632a4790>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f2d6329d7b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
25 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLEIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"n": 16,
|
27 |
+
"_shape": [],
|
28 |
+
"dtype": "int64",
|
29 |
+
"_np_random": null
|
30 |
+
},
|
31 |
+
"action_space": {
|
32 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
33 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
34 |
+
"n": 4,
|
35 |
+
"_shape": [],
|
36 |
+
"dtype": "int64",
|
37 |
+
"_np_random": null
|
38 |
+
},
|
39 |
+
"n_envs": 16,
|
40 |
+
"num_timesteps": 2506752,
|
41 |
+
"_total_timesteps": 2500000,
|
42 |
+
"_num_timesteps_at_start": 0,
|
43 |
+
"seed": null,
|
44 |
+
"action_noise": null,
|
45 |
+
"start_time": 1670428272486435293,
|
46 |
+
"learning_rate": 0.0003,
|
47 |
+
"tensorboard_log": null,
|
48 |
+
"lr_schedule": {
|
49 |
+
":type:": "<class 'function'>",
|
50 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
51 |
+
},
|
52 |
+
"_last_obs": {
|
53 |
+
":type:": "<class 'numpy.ndarray'>",
|
54 |
+
":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA0AAAAAAAAAAAAAAAAAAAAEAAAAAAAAAA0AAAAAAAAADgAAAAAAAAAAAAAAAAAAAAMAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
|
55 |
+
},
|
56 |
+
"_last_episode_starts": {
|
57 |
+
":type:": "<class 'numpy.ndarray'>",
|
58 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
59 |
+
},
|
60 |
+
"_last_original_obs": null,
|
61 |
+
"_episode_num": 0,
|
62 |
+
"use_sde": false,
|
63 |
+
"sde_sample_freq": -1,
|
64 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
65 |
+
"ep_info_buffer": {
|
66 |
+
":type:": "<class 'collections.deque'>",
|
67 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP/AAAAAAAACMAWyUSz2MAXSUR0CMVGT8HfMwdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CMVHkK/mDEdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVJHjp9qldX2UKGgGRwAAAAAAAAAAaAdLDWgIR0CMVIbpeNT+dX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVJMnJDE4dX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVJnhbW3CdX2UKGgGRwAAAAAAAAAAaAdLI2gIR0CMVKDgZTAGdX2UKGgGRz/wAAAAAAAAaAdLR2gIR0CMVKhKUVzqdX2UKGgGRz/wAAAAAAAAaAdLO2gIR0CMVMHoHLRsdX2UKGgGRz/wAAAAAAAAaAdLK2gIR0CMVNeGfwqidX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVNsTnJT3dX2UKGgGRz/wAAAAAAAAaAdLEGgIR0CMVOuKXOW0dX2UKGgGRz/wAAAAAAAAaAdLS2gIR0CMVO46Oo5xdX2UKGgGRz/wAAAAAAAAaAdLVGgIR0CMVPK0UoKEdX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CMVPzoUzsQdX2UKGgGRwAAAAAAAAAAaAdLKGgIR0CMVQOSW7e3dX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVQ/2TPjXdX2UKGgGRz/wAAAAAAAAaAdLUWgIR0CMVReHi3ocdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0CMVSIjW07bdX2UKGgGRwAAAAAAAAAAaAdLTGgIR0CMVROIInjRdX2UKGgGRwAAAAAAAAAAaAdLMWgIR0CMVRSuQp4KdX2UKGgGRz/wAAAAAAAAaAdLOGgIR0CMVSXP7el9dX2UKGgGRwAAAAAAAAAAaAdLGGgIR0CMVTNRm9QGdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVR3jdYW+dX2UKGgGRz/wAAAAAAAAaAdLG2gIR0CMVTc1wYLtdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CMVTyauwHJdX2UKGgGRz/wAAAAAAAAaAdLJGgIR0CMVTtMwlBydX2UKGgGRz/wAAAAAAAAaAdLR2gIR0CMVUAsCkoGdX2UKGgGRz/wAAAAAAAAaAdLGGgIR0CMVVRekYXPdX2UKGgGRwAAAAAAAAAAaAdLQGgIR0CMVU+6iCardX2UKGgGRz/wAAAAAAAAaAdLRWgIR0CMVVVFQVKxdX2UKGgGRwAAAAAAAAAAaAdLKWgIR0CMVWW0qpcYdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CMVXJ2dNFjdX2UKGgGRz/wAAAAAAAAaAdLQWgIR0CMVYClJpWWdX2UKGgGRz/wAAAAAAAAaAdLK2gIR0CMVXGmUGFBdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CMVXA+pwS8dX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CMVYSMcZLqdX2UKGgGRwAAAAAAAAAAaAdLLGgIR0CMVYQ9zOopdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CMVYOhkAggdX2UKGgGRz/wAAAAAAAAaAdLCWgIR0CMVZvcafjCdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0CMVYhqTKT0dX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CMVZZpztCzdX2UKGgGRz/wAAAAAAAAaAdLOmgIR0CMVaaWHDaXdX2UKGgGRz/wAAAAAAAAaAdLKWgIR0CMVbxVhkRSdX2UKGgGRz/wAAAAAAAAaAdLP2gIR0CMVcVpsXSCdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CMVbgWJrLydX2UKGgGRwAAAAAAAAAAaAdLQWgIR0CMVeB0ZFXrdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0CMVeXfqHGkdX2UKGgGRz/wAAAAAAAAaAdLOmgIR0CMVeIYWLxadX2UKGgGRz/wAAAAAAAAaAdLI2gIR0CMVfNqQA+7dX2UKGgGRz/wAAAAAAAAaAdLSmgIR0CMVfGWldkbdX2UKGgGRz/wAAAAAAAAaAdLW2gIR0CMVgfozN2UdX2UKGgGRz/wAAAAAAAAaAdLI2gIR0CMVf4vexfOdX2UKGgGRz/wAAAAAAAAaAdLW2gIR0CMVgNUfgaWdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CMVh5Ec81XdX2UKGgGRz/wAAAAAAAAaAdLPGgIR0CMVhsVLzwudX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CMVijgQ6IWdX2UKGgGRz/wAAAAAAAAaAdLHGgIR0CMVibTc6/7dX2UKGgGRz/wAAAAAAAAaAdLRmgIR0CMVjFBIFvAdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVjOh0yP/dX2UKGgGRz/wAAAAAAAAaAdLU2gIR0CMVkTzND+jdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0CMVl2GIsRQdX2UKGgGRwAAAAAAAAAAaAdLMGgIR0CMVl65Xlr/dX2UKGgGRz/wAAAAAAAAaAdLXGgIR0CMVlvJA+pwdX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CMVnLdvbXZdX2UKGgGRwAAAAAAAAAAaAdLE2gIR0CMVmcwQDmsdX2UKGgGRwAAAAAAAAAAaAdLJmgIR0CMVmgXdj5LdX2UKGgGRz/wAAAAAAAAaAdLO2gIR0CMVn8b70nPdX2UKGgGRz/wAAAAAAAAaAdLTmgIR0CMVoVIqbz9dX2UKGgGRz/wAAAAAAAAaAdLXWgIR0CMVoTQE6kqdX2UKGgGRz/wAAAAAAAAaAdLYWgIR0CMVnymQ8wIdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVpWdVea8dX2UKGgGRz/wAAAAAAAAaAdLLGgIR0CMVpCCz1K5dX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CMVqVlf7aadX2UKGgGRwAAAAAAAAAAaAdLFGgIR0CMVpxDst03dX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CMVqxYaHbidX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CMVqT+vQnhdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVr0fYBeYdX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CMVrN2TxG2dX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CMVsMBp5/tdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVru2qkuZdX2UKGgGRwAAAAAAAAAAaAdLTmgIR0CMVtVsk6cRdX2UKGgGRwAAAAAAAAAAaAdLJ2gIR0CMVsM8YAKfdX2UKGgGRz/wAAAAAAAAaAdLN2gIR0CMVtdznzQNdX2UKGgGRz/wAAAAAAAAaAdLGmgIR0CMVtSofjjrdX2UKGgGRwAAAAAAAAAAaAdLEWgIR0CMVtF6zE75dX2UKGgGRz/wAAAAAAAAaAdLGWgIR0CMVt2Cdz4ldX2UKGgGRz/wAAAAAAAAaAdLCmgIR0CMVurELpiadX2UKGgGRz/wAAAAAAAAaAdLImgIR0CMVxnLaEi/dX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CMVxVmSQo1dX2UKGgGRz/wAAAAAAAAaAdLKGgIR0CMVyMoc7yQdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVzZuAI6bdX2UKGgGRz/wAAAAAAAAaAdLI2gIR0CMVzB42S+ydX2UKGgGRz/wAAAAAAAAaAdLKmgIR0CMVydFOO81dX2UKGgGRz/wAAAAAAAAaAdLP2gIR0CMV00mdAgQdX2UKGgGRwAAAAAAAAAAaAdLEmgIR0CMV1P2wmmcdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMV2hVU+9rdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMV4AMlTm5dX2UKGgGRz/wAAAAAAAAaAdLHmgIR0CMV3yhBZ6ldX2UKGgGRwAAAAAAAAAAaAdLT2gIR0CMV303fhuPdWUu"
|
68 |
+
},
|
69 |
+
"ep_success_buffer": {
|
70 |
+
":type:": "<class 'collections.deque'>",
|
71 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
72 |
+
},
|
73 |
+
"_n_updates": 612,
|
74 |
+
"n_steps": 1024,
|
75 |
+
"gamma": 0.999,
|
76 |
+
"gae_lambda": 0.98,
|
77 |
+
"ent_coef": 0.01,
|
78 |
+
"vf_coef": 0.5,
|
79 |
+
"max_grad_norm": 0.5,
|
80 |
+
"batch_size": 64,
|
81 |
+
"n_epochs": 4,
|
82 |
+
"clip_range": {
|
83 |
+
":type:": "<class 'function'>",
|
84 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
85 |
+
},
|
86 |
+
"clip_range_vf": null,
|
87 |
+
"normalize_advantage": true,
|
88 |
+
"target_kl": null
|
89 |
+
}
|
FrozenLake-v1-version_0_0_2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:076e487a9776eab288de3e3019e76ceb562942976cdb43393039403bed8ce793
|
3 |
+
size 96057
|
FrozenLake-v1-version_0_0_2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e533cce85064fc42b3458d0cf1544b1d598dc3230d898cf33947305027960eb7
|
3 |
+
size 47297
|
FrozenLake-v1-version_0_0_2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
FrozenLake-v1-version_0_0_2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- FrozenLake-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: FrozenLake-v1
|
16 |
+
type: FrozenLake-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 0.90 +/- 0.30
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **FrozenLake-v1**
|
25 |
+
This is a trained model of a **PPO** agent playing **FrozenLake-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d632a41f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d632a4280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d632a4310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d632a43a0>", "_build": "<function ActorCriticPolicy._build at 0x7f2d632a4430>", "forward": "<function ActorCriticPolicy.forward at 0x7f2d632a44c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d632a4550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2d632a45e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d632a4670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d632a4700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d632a4790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2d6329d7b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLEIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 16, "_shape": [], "dtype": "int64", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2506752, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670428272486435293, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA0AAAAAAAAAAAAAAAAAAAAEAAAAAAAAAA0AAAAAAAAADgAAAAAAAAAAAAAAAAAAAAMAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP/AAAAAAAACMAWyUSz2MAXSUR0CMVGT8HfMwdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CMVHkK/mDEdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVJHjp9qldX2UKGgGRwAAAAAAAAAAaAdLDWgIR0CMVIbpeNT+dX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVJMnJDE4dX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVJnhbW3CdX2UKGgGRwAAAAAAAAAAaAdLI2gIR0CMVKDgZTAGdX2UKGgGRz/wAAAAAAAAaAdLR2gIR0CMVKhKUVzqdX2UKGgGRz/wAAAAAAAAaAdLO2gIR0CMVMHoHLRsdX2UKGgGRz/wAAAAAAAAaAdLK2gIR0CMVNeGfwqidX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVNsTnJT3dX2UKGgGRz/wAAAAAAAAaAdLEGgIR0CMVOuKXOW0dX2UKGgGRz/wAAAAAAAAaAdLS2gIR0CMVO46Oo5xdX2UKGgGRz/wAAAAAAAAaAdLVGgIR0CMVPK0UoKEdX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CMVPzoUzsQdX2UKGgGRwAAAAAAAAAAaAdLKGgIR0CMVQOSW7e3dX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVQ/2TPjXdX2UKGgGRz/wAAAAAAAAaAdLUWgIR0CMVReHi3ocdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0CMVSIjW07bdX2UKGgGRwAAAAAAAAAAaAdLTGgIR0CMVROIInjRdX2UKGgGRwAAAAAAAAAAaAdLMWgIR0CMVRSuQp4KdX2UKGgGRz/wAAAAAAAAaAdLOGgIR0CMVSXP7el9dX2UKGgGRwAAAAAAAAAAaAdLGGgIR0CMVTNRm9QGdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVR3jdYW+dX2UKGgGRz/wAAAAAAAAaAdLG2gIR0CMVTc1wYLtdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CMVTyauwHJdX2UKGgGRz/wAAAAAAAAaAdLJGgIR0CMVTtMwlBydX2UKGgGRz/wAAAAAAAAaAdLR2gIR0CMVUAsCkoGdX2UKGgGRz/wAAAAAAAAaAdLGGgIR0CMVVRekYXPdX2UKGgGRwAAAAAAAAAAaAdLQGgIR0CMVU+6iCardX2UKGgGRz/wAAAAAAAAaAdLRWgIR0CMVVVFQVKxdX2UKGgGRwAAAAAAAAAAaAdLKWgIR0CMVWW0qpcYdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CMVXJ2dNFjdX2UKGgGRz/wAAAAAAAAaAdLQWgIR0CMVYClJpWWdX2UKGgGRz/wAAAAAAAAaAdLK2gIR0CMVXGmUGFBdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CMVXA+pwS8dX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CMVYSMcZLqdX2UKGgGRwAAAAAAAAAAaAdLLGgIR0CMVYQ9zOopdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CMVYOhkAggdX2UKGgGRz/wAAAAAAAAaAdLCWgIR0CMVZvcafjCdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0CMVYhqTKT0dX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CMVZZpztCzdX2UKGgGRz/wAAAAAAAAaAdLOmgIR0CMVaaWHDaXdX2UKGgGRz/wAAAAAAAAaAdLKWgIR0CMVbxVhkRSdX2UKGgGRz/wAAAAAAAAaAdLP2gIR0CMVcVpsXSCdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CMVbgWJrLydX2UKGgGRwAAAAAAAAAAaAdLQWgIR0CMVeB0ZFXrdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0CMVeXfqHGkdX2UKGgGRz/wAAAAAAAAaAdLOmgIR0CMVeIYWLxadX2UKGgGRz/wAAAAAAAAaAdLI2gIR0CMVfNqQA+7dX2UKGgGRz/wAAAAAAAAaAdLSmgIR0CMVfGWldkbdX2UKGgGRz/wAAAAAAAAaAdLW2gIR0CMVgfozN2UdX2UKGgGRz/wAAAAAAAAaAdLI2gIR0CMVf4vexfOdX2UKGgGRz/wAAAAAAAAaAdLW2gIR0CMVgNUfgaWdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CMVh5Ec81XdX2UKGgGRz/wAAAAAAAAaAdLPGgIR0CMVhsVLzwudX2UKGgGRz/wAAAAAAAAaAdLFmgIR0CMVijgQ6IWdX2UKGgGRz/wAAAAAAAAaAdLHGgIR0CMVibTc6/7dX2UKGgGRz/wAAAAAAAAaAdLRmgIR0CMVjFBIFvAdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVjOh0yP/dX2UKGgGRz/wAAAAAAAAaAdLU2gIR0CMVkTzND+jdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0CMVl2GIsRQdX2UKGgGRwAAAAAAAAAAaAdLMGgIR0CMVl65Xlr/dX2UKGgGRz/wAAAAAAAAaAdLXGgIR0CMVlvJA+pwdX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CMVnLdvbXZdX2UKGgGRwAAAAAAAAAAaAdLE2gIR0CMVmcwQDmsdX2UKGgGRwAAAAAAAAAAaAdLJmgIR0CMVmgXdj5LdX2UKGgGRz/wAAAAAAAAaAdLO2gIR0CMVn8b70nPdX2UKGgGRz/wAAAAAAAAaAdLTmgIR0CMVoVIqbz9dX2UKGgGRz/wAAAAAAAAaAdLXWgIR0CMVoTQE6kqdX2UKGgGRz/wAAAAAAAAaAdLYWgIR0CMVnymQ8wIdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVpWdVea8dX2UKGgGRz/wAAAAAAAAaAdLLGgIR0CMVpCCz1K5dX2UKGgGRz/wAAAAAAAAaAdLE2gIR0CMVqVlf7aadX2UKGgGRwAAAAAAAAAAaAdLFGgIR0CMVpxDst03dX2UKGgGRz/wAAAAAAAAaAdLMmgIR0CMVqxYaHbidX2UKGgGRz/wAAAAAAAAaAdLD2gIR0CMVqT+vQnhdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0CMVr0fYBeYdX2UKGgGRz/wAAAAAAAAaAdLIGgIR0CMVrN2TxG2dX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CMVsMBp5/tdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVru2qkuZdX2UKGgGRwAAAAAAAAAAaAdLTmgIR0CMVtVsk6cRdX2UKGgGRwAAAAAAAAAAaAdLJ2gIR0CMVsM8YAKfdX2UKGgGRz/wAAAAAAAAaAdLN2gIR0CMVtdznzQNdX2UKGgGRz/wAAAAAAAAaAdLGmgIR0CMVtSofjjrdX2UKGgGRwAAAAAAAAAAaAdLEWgIR0CMVtF6zE75dX2UKGgGRz/wAAAAAAAAaAdLGWgIR0CMVt2Cdz4ldX2UKGgGRz/wAAAAAAAAaAdLCmgIR0CMVurELpiadX2UKGgGRz/wAAAAAAAAaAdLImgIR0CMVxnLaEi/dX2UKGgGRz/wAAAAAAAAaAdLEWgIR0CMVxVmSQo1dX2UKGgGRz/wAAAAAAAAaAdLKGgIR0CMVyMoc7yQdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMVzZuAI6bdX2UKGgGRz/wAAAAAAAAaAdLI2gIR0CMVzB42S+ydX2UKGgGRz/wAAAAAAAAaAdLKmgIR0CMVydFOO81dX2UKGgGRz/wAAAAAAAAaAdLP2gIR0CMV00mdAgQdX2UKGgGRwAAAAAAAAAAaAdLEmgIR0CMV1P2wmmcdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMV2hVU+9rdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0CMV4AMlTm5dX2UKGgGRz/wAAAAAAAAaAdLHmgIR0CMV3yhBZ6ldX2UKGgGRwAAAAAAAAAAaAdLT2gIR0CMV303fhuPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 612, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 0.9, "std_reward": 0.30000000000000004, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-07T16:06:26.304604"}
|