{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2d6329d7b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLEIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 16, "_shape": [], "dtype": "int64", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2506752, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670430115745126688, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAgAAAAAAAAACQAAAAAAAAAEAAAAAAAAAA4AAAAAAAAADQAAAAAAAAAJAAAAAAAAAAQAAAAAAAAACAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAADgAAAAAAAAAKAAAAAAAAAAQAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP/AAAAAAAACMAWyUSwaMAXSUR0CM2Immce8xdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2IjLSuyNdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2JS6UaAGdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2JL7GecydX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2I81XNkfdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2IjfNzKcdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2JON5t3wdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2JK6nR9gdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CM2I2BreqJdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CM2I9TxXnydX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CM2J5/LDAKdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2JulXRw7dX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2JrJKaoddX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CM2JTrE9+xdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2J8w5/9YdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2JjKgZjydX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CM2JaYeDFqdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2KLkS26TdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2J8gIQe4dX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CM2JxI8QqadX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CM2KdBjWkKdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2J0zTF2ndX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CM2KXY150KdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CM2KUEgW8AdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2J7fHggpdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0CM2J3dKujidX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2K4R28qXdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2KswtapxdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2KpT/ACXdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2K6zVtoBdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2KhSLqD9dX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CM2KcT8HfNdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2KYsunMudX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2LKAavRrdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2K67NB4VdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2Kvkili0dX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2LbcoH9ndX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2KzVtoBadX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2LV/+bVjdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2K6S1Vo6dX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2K2R7qptdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2Lrk8zRAdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CM2LdjXnQqdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CM2MBgeA/cdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2L5sTFl1dX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CM2LyjHn2adX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2LgKF7D3dX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2LbLU1AJdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2LXd0q6OdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2MI42jwhdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2LuWKMvRdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2MaZx7zDdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0CM2MOG0u14dX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2LyGSIP9dX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2MUnogV5dX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2L4nF5v+dX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2MpmVZ9vdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2MblRxcWdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2M3vQWvbdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2MwoLG70dX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2MeQMhHLdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2MZQ53kgdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2MVj7Q9idX2UKGgGRz/wAAAAAAAAaAdLCGgIR0CM2MJmdy1edX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2NHEuQIVdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2MsiB5HFdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2NYV6/qPdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0CM2NU2DQJHdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2NNHH3lCdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2MxO+IuXdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2NUwSJ0odX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2M4wyqMndX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2NqGlANYdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2NcE/0NCdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2N4A0bcXdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2Nw5vLowdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2NeoDPnkdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2NJxvNu+dX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2OHJLdvbdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2NsniNsFdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CM2NkGzKLbdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CM2NgZ0jkddX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2OYw7DEWdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2OVRDTjOdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2OMqjJuEdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2NwqiGnGdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2OTfR/mUdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2N3evZAZdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2Oojv/ipdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2OaisXBQdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2O2cawUydX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2Oc2itaIdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2PFG5MDfdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CM2O5imVJMdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2OqrBCUpdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2OiO/+KkdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2Oehf0EpdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0CM2OSsbNr1dX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2PXOnl4kdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0CM2PTuOS4fdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 612, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}