kennethgoodman
commited on
Commit
·
1604c5b
1
Parent(s):
ef82818
Upload PPO Taxi-v3 trained agent
Browse files- README.md +37 -0
- Taxi-v3-version_0_0_2.zip +3 -0
- Taxi-v3-version_0_0_2/_stable_baselines3_version +1 -0
- Taxi-v3-version_0_0_2/data +89 -0
- Taxi-v3-version_0_0_2/policy.optimizer.pth +3 -0
- Taxi-v3-version_0_0_2/policy.pth +3 -0
- Taxi-v3-version_0_0_2/pytorch_variables.pth +3 -0
- Taxi-v3-version_0_0_2/system_info.txt +7 -0
- config.json +1 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Taxi-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Taxi-v3
|
16 |
+
type: Taxi-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -200.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **Taxi-v3**
|
25 |
+
This is a trained model of a **PPO** agent playing **Taxi-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
Taxi-v3-version_0_0_2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fdd9701f2e731402a7cf822800da069eb48bfad6758cf2efba23ca09b189f633
|
3 |
+
size 901133
|
Taxi-v3-version_0_0_2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
Taxi-v3-version_0_0_2/data
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d632a41f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d632a4280>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d632a4310>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d632a43a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2d632a4430>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2d632a44c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d632a4550>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2d632a45e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d632a4670>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d632a4700>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d632a4790>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f2d6329d7b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
25 |
+
":serialized:": "gAWVgwAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRN9AGMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lGgHk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==",
|
26 |
+
"n": 500,
|
27 |
+
"_shape": [],
|
28 |
+
"dtype": "int64",
|
29 |
+
"_np_random": null
|
30 |
+
},
|
31 |
+
"action_space": {
|
32 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
33 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
34 |
+
"n": 6,
|
35 |
+
"_shape": [],
|
36 |
+
"dtype": "int64",
|
37 |
+
"_np_random": null
|
38 |
+
},
|
39 |
+
"n_envs": 16,
|
40 |
+
"num_timesteps": 2506752,
|
41 |
+
"_total_timesteps": 2500000,
|
42 |
+
"_num_timesteps_at_start": 0,
|
43 |
+
"seed": null,
|
44 |
+
"action_noise": null,
|
45 |
+
"start_time": 1670431990095875901,
|
46 |
+
"learning_rate": 0.0003,
|
47 |
+
"tensorboard_log": null,
|
48 |
+
"lr_schedule": {
|
49 |
+
":type:": "<class 'function'>",
|
50 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
51 |
+
},
|
52 |
+
"_last_obs": {
|
53 |
+
":type:": "<class 'numpy.ndarray'>",
|
54 |
+
":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAEoAAAAAAAAAqAEAAAAAAACuAAAAAAAAAOMBAAAAAAAA4gEAAAAAAADUAQAAAAAAAKgBAAAAAAAAAQAAAAAAAACDAQAAAAAAACEBAAAAAAAASgAAAAAAAACpAAAAAAAAAM8BAAAAAAAApgAAAAAAAACoAQAAAAAAAKgBAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
|
55 |
+
},
|
56 |
+
"_last_episode_starts": {
|
57 |
+
":type:": "<class 'numpy.ndarray'>",
|
58 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
59 |
+
},
|
60 |
+
"_last_original_obs": null,
|
61 |
+
"_episode_num": 0,
|
62 |
+
"use_sde": false,
|
63 |
+
"sde_sample_freq": -1,
|
64 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
65 |
+
"ep_info_buffer": {
|
66 |
+
":type:": "<class 'collections.deque'>",
|
67 |
+
":serialized:": "gAWVUAoAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRKOP///4wBbJRLyIwBdJRHQIyxko2GZeB1fZQoaAZKOP///2gHS8hoCEdAjLIl7D2rXHV9lChoBko4////aAdLyGgIR0CMsc1gpjMFdX2UKGgGSjj///9oB0vIaAhHQIyyfBJqZc91fZQoaAZKOP///2gHS8hoCEdAjLJ1nmJWNnV9lChoBko4////aAdLyGgIR0CMswwYcebNdX2UKGgGSjj///9oB0vIaAhHQIyzWVNYbKl1fZQoaAZKOP///2gHS8hoCEdAjLNnxBmf5HV9lChoBko4////aAdLyGgIR0CMs0A9V3lkdX2UKGgGSjj///9oB0vIaAhHQIyzEtkFwDN1fZQoaAZKOP///2gHS8hoCEdAjLN1C5VfeHV9lChoBko4////aAdLyGgIR0CMs9zp5eJIdX2UKGgGSjj///9oB0vIaAhHQIyzmD15B1N1fZQoaAZKOP///2gHS8hoCEdAjLOvwVj7RHV9lChoBko4////aAdLyGgIR0CMs4VzIV/MdX2UKGgGSjj///9oB0vIaAhHQIyzpuhsZYR1fZQoaAZKOP///2gHS8hoCEdAjLOnmaH9FXV9lChoBko4////aAdLyGgIR0CMtDtWMju8dX2UKGgGSjj///9oB0vIaAhHQIyz4lhPTG51fZQoaAZKOP///2gHS8hoCEdAjNo6Ymb9ZXV9lChoBko4////aAdLyGgIR0CM2jMvAXVLdX2UKGgGSjj///9oB0vIaAhHQIzawQDmr811fZQoaAZKOP///2gHS8hoCEdAjNsOez2OAHV9lChoBko4////aAdLyGgIR0CM2xziCJ40dX2UKGgGSjj///9oB0vIaAhHQIza72alUId1fZQoaAZKOP///2gHS8hoCEdAjNrB8YyftnV9lChoBko4////aAdLyGgIR0CM2yH8jzI4dX2UKGgGSjj///9oB0vIaAhHQIzbiylenht1fZQoaAZKOP///2gHS8hoCEdAjNtGe+VTrHV9lChoBko4////aAdLyGgIR0CM213zMA3ldX2UKGgGSjj///9oB0vIaAhHQIzbM6RyOrB1fZQoaAZKOP///2gHS8hoCEdAjNtU9IPK+3V9lChoBko4////aAdLyGgIR0CM21Xe3x4IdX2UKGgGSjj///9oB0vIaAhHQIzb6V0Lc9J1fZQoaAZKOP///2gHS8hoCEdAjNuP6TGHYnV9lChoBko4////aAdLyGgIR0CM3D6Ww/xEdX2UKGgGSjj///9oB0vIaAhHQIzcN05lvqF1fZQoaAZKOP///2gHS8hoCEdAjNzGUOd5IHV9lChoBko4////aAdLyGgIR0CM3RNTtLL7dX2UKGgGSjj///9oB0vIaAhHQIzdImsvIwN1fZQoaAZKOP///2gHS8hoCEdAjNz0ipvP1XV9lChoBko4////aAdLyGgIR0CM3McVgx8EdX2UKGgGSjj///9oB0vIaAhHQIzdJyfcvdx1fZQoaAZKOP///2gHS8hoCEdAjN2OyeI2wXV9lChoBko4////aAdLyGgIR0CM3Uoc7yQQdX2UKGgGSjj///9oB0vIaAhHQIzdYjQiRnx1fZQoaAZKOP///2gHS8hoCEdAjN03++/QB3V9lChoBko4////aAdLyGgIR0CM3VmxMWXUdX2UKGgGSjj///9oB0vIaAhHQIzdW5jH4oJ1fZQoaAZKOP///2gHS8hoCEdAjN3vegte2XV9lChoBko4////aAdLyGgIR0CM3Zn9vS+hdX2UKGgGSjj///9oB0vIaAhHQIzeTsv7FbV1fZQoaAZKOP///2gHS8hoCEdAjN5HIZIg/3V9lChoBko4////aAdLyGgIR0CM3tWH1vl2dX2UKGgGSjj///9oB0vIaAhHQIzfKZQYUFl1fZQoaAZKOP///2gHS8hoCEdAjN85mAbyY3V9lChoBko4////aAdLyGgIR0CM3wylenhsdX2UKGgGSjj///9oB0vIaAhHQIze3y/bj951fZQoaAZKOP///2gHS8hoCEdAjN8/ms/6f3V9lChoBko4////aAdLyGgIR0CM36dMj/uLdX2UKGgGSjj///9oB0vIaAhHQIzfYqAjIJZ1fZQoaAZKOP///2gHS8hoCEdAjN951vES/XV9lChoBko4////aAdLyGgIR0CM30+CbtqpdX2UKGgGSjj///9oB0vIaAhHQIzfcO5J9Rd1fZQoaAZKOP///2gHS8hoCEdAjN9yJsO5KHV9lChoBko4////aAdLyGgIR0CM4AXWOIZZdX2UKGgGSjj///9oB0vIaAhHQIzfrXjENvx1fZQoaAZKOP///2gHS8hoCEdAjOBcrZrYXnV9lChoBko4////aAdLyGgIR0CM4FtE5QxfdX2UKGgGSjj///9oB0vIaAhHQIzg9RP420l1fZQoaAZKOP///2gHS8hoCEdAjOFDCpFTenV9lChoBko4////aAdLyGgIR0CM4VFy7wrldX2UKGgGSjj///9oB0vIaAhHQIzhI/qxC6Z1fZQoaAZKOP///2gHS8hoCEdAjOD2hZha1XV9lChoBko4////aAdLyGgIR0CM4VapxWDIdX2UKGgGSjj///9oB0vIaAhHQIzhwLPUrkN1fZQoaAZKOP///2gHS8hoCEdAjOF8Bltj1HV9lChoBko4////aAdLyGgIR0CM4ZMmF8G+dX2UKGgGSjj///9oB0vIaAhHQIzhaN83Mpx1fZQoaAZKOP///2gHS8hoCEdAjOGKaG5+Y3V9lChoBko4////aAdLyGgIR0CM4Yrgflp5dX2UKGgGSjj///9oB0vIaAhHQIziHmcOLBN1fZQoaAZKOP///2gHS8hoCEdAjOHFXaJyhnV9lChoBko4////aAdLyGgIR0CM4nOu7pV0dX2UKGgGSjj///9oB0vIaAhHQIzibHGS6lN1fZQoaAZKOP///2gHS8hoCEdAjOL6TwDvE3V9lChoBko4////aAdLyGgIR0CM40c2itaIdX2UKGgGSjj///9oB0vIaAhHQIzjVZaFEiN1fZQoaAZKOP///2gHS8hoCEdAjOMnzQNTcnV9lChoBko4////aAdLyGgIR0CM4vpcophGdX2UKGgGSjj///9oB0vIaAhHQIzjWlyimEZ1fZQoaAZKOP///2gHS8hoCEdAjOPCI1tO23V9lChoBko4////aAdLyGgIR0CM4316mfoSdX2UKGgGSjj///9oB0vIaAhHQIzjlMdtEXt1fZQoaAZKOP///2gHS8hoCEdAjONqbjLjgnV9lChoBko4////aAdLyGgIR0CM44vHtF8YdX2UKGgGSjj///9oB0vIaAhHQIzjjByjpLV1fZQoaAZKOP///2gHS8hoCEdAjOQfozN2T3V9lChoBko4////aAdLyGgIR0CM48Yu01IidX2UKGgGSjj///9oB0vIaAhHQIzkdEuxrzp1ZS4="
|
68 |
+
},
|
69 |
+
"ep_success_buffer": {
|
70 |
+
":type:": "<class 'collections.deque'>",
|
71 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
72 |
+
},
|
73 |
+
"_n_updates": 612,
|
74 |
+
"n_steps": 1024,
|
75 |
+
"gamma": 0.999,
|
76 |
+
"gae_lambda": 0.98,
|
77 |
+
"ent_coef": 0.01,
|
78 |
+
"vf_coef": 0.5,
|
79 |
+
"max_grad_norm": 0.5,
|
80 |
+
"batch_size": 64,
|
81 |
+
"n_epochs": 4,
|
82 |
+
"clip_range": {
|
83 |
+
":type:": "<class 'function'>",
|
84 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
85 |
+
},
|
86 |
+
"clip_range_vf": null,
|
87 |
+
"normalize_advantage": true,
|
88 |
+
"target_kl": null
|
89 |
+
}
|
Taxi-v3-version_0_0_2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8d1fdcf96520dc079c1ba71e29af3d0a60219aec2436d516b9264b357aebeb5
|
3 |
+
size 592697
|
Taxi-v3-version_0_0_2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8c108d4ccbb9d43574417ea925bde6c56fe0e3fe3d87a4f398f8164085c01f1
|
3 |
+
size 295617
|
Taxi-v3-version_0_0_2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
Taxi-v3-version_0_0_2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d632a41f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d632a4280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d632a4310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d632a43a0>", "_build": "<function ActorCriticPolicy._build at 0x7f2d632a4430>", "forward": "<function ActorCriticPolicy.forward at 0x7f2d632a44c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d632a4550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2d632a45e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d632a4670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d632a4700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d632a4790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2d6329d7b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgwAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRN9AGMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lGgHk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==", "n": 500, "_shape": [], "dtype": "int64", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 6, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2506752, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670431990095875901, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAEoAAAAAAAAAqAEAAAAAAACuAAAAAAAAAOMBAAAAAAAA4gEAAAAAAADUAQAAAAAAAKgBAAAAAAAAAQAAAAAAAACDAQAAAAAAACEBAAAAAAAASgAAAAAAAACpAAAAAAAAAM8BAAAAAAAApgAAAAAAAACoAQAAAAAAAKgBAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVUAoAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRKOP///4wBbJRLyIwBdJRHQIyxko2GZeB1fZQoaAZKOP///2gHS8hoCEdAjLIl7D2rXHV9lChoBko4////aAdLyGgIR0CMsc1gpjMFdX2UKGgGSjj///9oB0vIaAhHQIyyfBJqZc91fZQoaAZKOP///2gHS8hoCEdAjLJ1nmJWNnV9lChoBko4////aAdLyGgIR0CMswwYcebNdX2UKGgGSjj///9oB0vIaAhHQIyzWVNYbKl1fZQoaAZKOP///2gHS8hoCEdAjLNnxBmf5HV9lChoBko4////aAdLyGgIR0CMs0A9V3lkdX2UKGgGSjj///9oB0vIaAhHQIyzEtkFwDN1fZQoaAZKOP///2gHS8hoCEdAjLN1C5VfeHV9lChoBko4////aAdLyGgIR0CMs9zp5eJIdX2UKGgGSjj///9oB0vIaAhHQIyzmD15B1N1fZQoaAZKOP///2gHS8hoCEdAjLOvwVj7RHV9lChoBko4////aAdLyGgIR0CMs4VzIV/MdX2UKGgGSjj///9oB0vIaAhHQIyzpuhsZYR1fZQoaAZKOP///2gHS8hoCEdAjLOnmaH9FXV9lChoBko4////aAdLyGgIR0CMtDtWMju8dX2UKGgGSjj///9oB0vIaAhHQIyz4lhPTG51fZQoaAZKOP///2gHS8hoCEdAjNo6Ymb9ZXV9lChoBko4////aAdLyGgIR0CM2jMvAXVLdX2UKGgGSjj///9oB0vIaAhHQIzawQDmr811fZQoaAZKOP///2gHS8hoCEdAjNsOez2OAHV9lChoBko4////aAdLyGgIR0CM2xziCJ40dX2UKGgGSjj///9oB0vIaAhHQIza72alUId1fZQoaAZKOP///2gHS8hoCEdAjNrB8YyftnV9lChoBko4////aAdLyGgIR0CM2yH8jzI4dX2UKGgGSjj///9oB0vIaAhHQIzbiylenht1fZQoaAZKOP///2gHS8hoCEdAjNtGe+VTrHV9lChoBko4////aAdLyGgIR0CM213zMA3ldX2UKGgGSjj///9oB0vIaAhHQIzbM6RyOrB1fZQoaAZKOP///2gHS8hoCEdAjNtU9IPK+3V9lChoBko4////aAdLyGgIR0CM21Xe3x4IdX2UKGgGSjj///9oB0vIaAhHQIzb6V0Lc9J1fZQoaAZKOP///2gHS8hoCEdAjNuP6TGHYnV9lChoBko4////aAdLyGgIR0CM3D6Ww/xEdX2UKGgGSjj///9oB0vIaAhHQIzcN05lvqF1fZQoaAZKOP///2gHS8hoCEdAjNzGUOd5IHV9lChoBko4////aAdLyGgIR0CM3RNTtLL7dX2UKGgGSjj///9oB0vIaAhHQIzdImsvIwN1fZQoaAZKOP///2gHS8hoCEdAjNz0ipvP1XV9lChoBko4////aAdLyGgIR0CM3McVgx8EdX2UKGgGSjj///9oB0vIaAhHQIzdJyfcvdx1fZQoaAZKOP///2gHS8hoCEdAjN2OyeI2wXV9lChoBko4////aAdLyGgIR0CM3Uoc7yQQdX2UKGgGSjj///9oB0vIaAhHQIzdYjQiRnx1fZQoaAZKOP///2gHS8hoCEdAjN03++/QB3V9lChoBko4////aAdLyGgIR0CM3VmxMWXUdX2UKGgGSjj///9oB0vIaAhHQIzdW5jH4oJ1fZQoaAZKOP///2gHS8hoCEdAjN3vegte2XV9lChoBko4////aAdLyGgIR0CM3Zn9vS+hdX2UKGgGSjj///9oB0vIaAhHQIzeTsv7FbV1fZQoaAZKOP///2gHS8hoCEdAjN5HIZIg/3V9lChoBko4////aAdLyGgIR0CM3tWH1vl2dX2UKGgGSjj///9oB0vIaAhHQIzfKZQYUFl1fZQoaAZKOP///2gHS8hoCEdAjN85mAbyY3V9lChoBko4////aAdLyGgIR0CM3wylenhsdX2UKGgGSjj///9oB0vIaAhHQIze3y/bj951fZQoaAZKOP///2gHS8hoCEdAjN8/ms/6f3V9lChoBko4////aAdLyGgIR0CM36dMj/uLdX2UKGgGSjj///9oB0vIaAhHQIzfYqAjIJZ1fZQoaAZKOP///2gHS8hoCEdAjN951vES/XV9lChoBko4////aAdLyGgIR0CM30+CbtqpdX2UKGgGSjj///9oB0vIaAhHQIzfcO5J9Rd1fZQoaAZKOP///2gHS8hoCEdAjN9yJsO5KHV9lChoBko4////aAdLyGgIR0CM4AXWOIZZdX2UKGgGSjj///9oB0vIaAhHQIzfrXjENvx1fZQoaAZKOP///2gHS8hoCEdAjOBcrZrYXnV9lChoBko4////aAdLyGgIR0CM4FtE5QxfdX2UKGgGSjj///9oB0vIaAhHQIzg9RP420l1fZQoaAZKOP///2gHS8hoCEdAjOFDCpFTenV9lChoBko4////aAdLyGgIR0CM4VFy7wrldX2UKGgGSjj///9oB0vIaAhHQIzhI/qxC6Z1fZQoaAZKOP///2gHS8hoCEdAjOD2hZha1XV9lChoBko4////aAdLyGgIR0CM4VapxWDIdX2UKGgGSjj///9oB0vIaAhHQIzhwLPUrkN1fZQoaAZKOP///2gHS8hoCEdAjOF8Bltj1HV9lChoBko4////aAdLyGgIR0CM4ZMmF8G+dX2UKGgGSjj///9oB0vIaAhHQIzhaN83Mpx1fZQoaAZKOP///2gHS8hoCEdAjOGKaG5+Y3V9lChoBko4////aAdLyGgIR0CM4Yrgflp5dX2UKGgGSjj///9oB0vIaAhHQIziHmcOLBN1fZQoaAZKOP///2gHS8hoCEdAjOHFXaJyhnV9lChoBko4////aAdLyGgIR0CM4nOu7pV0dX2UKGgGSjj///9oB0vIaAhHQIzibHGS6lN1fZQoaAZKOP///2gHS8hoCEdAjOL6TwDvE3V9lChoBko4////aAdLyGgIR0CM40c2itaIdX2UKGgGSjj///9oB0vIaAhHQIzjVZaFEiN1fZQoaAZKOP///2gHS8hoCEdAjOMnzQNTcnV9lChoBko4////aAdLyGgIR0CM4vpcophGdX2UKGgGSjj///9oB0vIaAhHQIzjWlyimEZ1fZQoaAZKOP///2gHS8hoCEdAjOPCI1tO23V9lChoBko4////aAdLyGgIR0CM4316mfoSdX2UKGgGSjj///9oB0vIaAhHQIzjlMdtEXt1fZQoaAZKOP///2gHS8hoCEdAjONqbjLjgnV9lChoBko4////aAdLyGgIR0CM44vHtF8YdX2UKGgGSjj///9oB0vIaAhHQIzjjByjpLV1fZQoaAZKOP///2gHS8hoCEdAjOQfozN2T3V9lChoBko4////aAdLyGgIR0CM48Yu01IidX2UKGgGSjj///9oB0vIaAhHQIzkdEuxrzp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 612, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -200.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-07T17:08:43.896164"}
|