kennethgoodman commited on
Commit
1604c5b
·
1 Parent(s): ef82818

Upload PPO Taxi-v3 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Taxi-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Taxi-v3
16
+ type: Taxi-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -200.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **Taxi-v3**
25
+ This is a trained model of a **PPO** agent playing **Taxi-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
Taxi-v3-version_0_0_2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdd9701f2e731402a7cf822800da069eb48bfad6758cf2efba23ca09b189f633
3
+ size 901133
Taxi-v3-version_0_0_2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
Taxi-v3-version_0_0_2/data ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d632a41f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d632a4280>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d632a4310>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d632a43a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2d632a4430>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2d632a44c0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d632a4550>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2d632a45e0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d632a4670>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d632a4700>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d632a4790>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f2d6329d7b0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
25
+ ":serialized:": "gAWVgwAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRN9AGMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lGgHk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==",
26
+ "n": 500,
27
+ "_shape": [],
28
+ "dtype": "int64",
29
+ "_np_random": null
30
+ },
31
+ "action_space": {
32
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
33
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
34
+ "n": 6,
35
+ "_shape": [],
36
+ "dtype": "int64",
37
+ "_np_random": null
38
+ },
39
+ "n_envs": 16,
40
+ "num_timesteps": 2506752,
41
+ "_total_timesteps": 2500000,
42
+ "_num_timesteps_at_start": 0,
43
+ "seed": null,
44
+ "action_noise": null,
45
+ "start_time": 1670431990095875901,
46
+ "learning_rate": 0.0003,
47
+ "tensorboard_log": null,
48
+ "lr_schedule": {
49
+ ":type:": "<class 'function'>",
50
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
51
+ },
52
+ "_last_obs": {
53
+ ":type:": "<class 'numpy.ndarray'>",
54
+ ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAEoAAAAAAAAAqAEAAAAAAACuAAAAAAAAAOMBAAAAAAAA4gEAAAAAAADUAQAAAAAAAKgBAAAAAAAAAQAAAAAAAACDAQAAAAAAACEBAAAAAAAASgAAAAAAAACpAAAAAAAAAM8BAAAAAAAApgAAAAAAAACoAQAAAAAAAKgBAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
55
+ },
56
+ "_last_episode_starts": {
57
+ ":type:": "<class 'numpy.ndarray'>",
58
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
59
+ },
60
+ "_last_original_obs": null,
61
+ "_episode_num": 0,
62
+ "use_sde": false,
63
+ "sde_sample_freq": -1,
64
+ "_current_progress_remaining": -0.0027007999999999477,
65
+ "ep_info_buffer": {
66
+ ":type:": "<class 'collections.deque'>",
67
+ ":serialized:": "gAWVUAoAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRKOP///4wBbJRLyIwBdJRHQIyxko2GZeB1fZQoaAZKOP///2gHS8hoCEdAjLIl7D2rXHV9lChoBko4////aAdLyGgIR0CMsc1gpjMFdX2UKGgGSjj///9oB0vIaAhHQIyyfBJqZc91fZQoaAZKOP///2gHS8hoCEdAjLJ1nmJWNnV9lChoBko4////aAdLyGgIR0CMswwYcebNdX2UKGgGSjj///9oB0vIaAhHQIyzWVNYbKl1fZQoaAZKOP///2gHS8hoCEdAjLNnxBmf5HV9lChoBko4////aAdLyGgIR0CMs0A9V3lkdX2UKGgGSjj///9oB0vIaAhHQIyzEtkFwDN1fZQoaAZKOP///2gHS8hoCEdAjLN1C5VfeHV9lChoBko4////aAdLyGgIR0CMs9zp5eJIdX2UKGgGSjj///9oB0vIaAhHQIyzmD15B1N1fZQoaAZKOP///2gHS8hoCEdAjLOvwVj7RHV9lChoBko4////aAdLyGgIR0CMs4VzIV/MdX2UKGgGSjj///9oB0vIaAhHQIyzpuhsZYR1fZQoaAZKOP///2gHS8hoCEdAjLOnmaH9FXV9lChoBko4////aAdLyGgIR0CMtDtWMju8dX2UKGgGSjj///9oB0vIaAhHQIyz4lhPTG51fZQoaAZKOP///2gHS8hoCEdAjNo6Ymb9ZXV9lChoBko4////aAdLyGgIR0CM2jMvAXVLdX2UKGgGSjj///9oB0vIaAhHQIzawQDmr811fZQoaAZKOP///2gHS8hoCEdAjNsOez2OAHV9lChoBko4////aAdLyGgIR0CM2xziCJ40dX2UKGgGSjj///9oB0vIaAhHQIza72alUId1fZQoaAZKOP///2gHS8hoCEdAjNrB8YyftnV9lChoBko4////aAdLyGgIR0CM2yH8jzI4dX2UKGgGSjj///9oB0vIaAhHQIzbiylenht1fZQoaAZKOP///2gHS8hoCEdAjNtGe+VTrHV9lChoBko4////aAdLyGgIR0CM213zMA3ldX2UKGgGSjj///9oB0vIaAhHQIzbM6RyOrB1fZQoaAZKOP///2gHS8hoCEdAjNtU9IPK+3V9lChoBko4////aAdLyGgIR0CM21Xe3x4IdX2UKGgGSjj///9oB0vIaAhHQIzb6V0Lc9J1fZQoaAZKOP///2gHS8hoCEdAjNuP6TGHYnV9lChoBko4////aAdLyGgIR0CM3D6Ww/xEdX2UKGgGSjj///9oB0vIaAhHQIzcN05lvqF1fZQoaAZKOP///2gHS8hoCEdAjNzGUOd5IHV9lChoBko4////aAdLyGgIR0CM3RNTtLL7dX2UKGgGSjj///9oB0vIaAhHQIzdImsvIwN1fZQoaAZKOP///2gHS8hoCEdAjNz0ipvP1XV9lChoBko4////aAdLyGgIR0CM3McVgx8EdX2UKGgGSjj///9oB0vIaAhHQIzdJyfcvdx1fZQoaAZKOP///2gHS8hoCEdAjN2OyeI2wXV9lChoBko4////aAdLyGgIR0CM3Uoc7yQQdX2UKGgGSjj///9oB0vIaAhHQIzdYjQiRnx1fZQoaAZKOP///2gHS8hoCEdAjN03++/QB3V9lChoBko4////aAdLyGgIR0CM3VmxMWXUdX2UKGgGSjj///9oB0vIaAhHQIzdW5jH4oJ1fZQoaAZKOP///2gHS8hoCEdAjN3vegte2XV9lChoBko4////aAdLyGgIR0CM3Zn9vS+hdX2UKGgGSjj///9oB0vIaAhHQIzeTsv7FbV1fZQoaAZKOP///2gHS8hoCEdAjN5HIZIg/3V9lChoBko4////aAdLyGgIR0CM3tWH1vl2dX2UKGgGSjj///9oB0vIaAhHQIzfKZQYUFl1fZQoaAZKOP///2gHS8hoCEdAjN85mAbyY3V9lChoBko4////aAdLyGgIR0CM3wylenhsdX2UKGgGSjj///9oB0vIaAhHQIze3y/bj951fZQoaAZKOP///2gHS8hoCEdAjN8/ms/6f3V9lChoBko4////aAdLyGgIR0CM36dMj/uLdX2UKGgGSjj///9oB0vIaAhHQIzfYqAjIJZ1fZQoaAZKOP///2gHS8hoCEdAjN951vES/XV9lChoBko4////aAdLyGgIR0CM30+CbtqpdX2UKGgGSjj///9oB0vIaAhHQIzfcO5J9Rd1fZQoaAZKOP///2gHS8hoCEdAjN9yJsO5KHV9lChoBko4////aAdLyGgIR0CM4AXWOIZZdX2UKGgGSjj///9oB0vIaAhHQIzfrXjENvx1fZQoaAZKOP///2gHS8hoCEdAjOBcrZrYXnV9lChoBko4////aAdLyGgIR0CM4FtE5QxfdX2UKGgGSjj///9oB0vIaAhHQIzg9RP420l1fZQoaAZKOP///2gHS8hoCEdAjOFDCpFTenV9lChoBko4////aAdLyGgIR0CM4VFy7wrldX2UKGgGSjj///9oB0vIaAhHQIzhI/qxC6Z1fZQoaAZKOP///2gHS8hoCEdAjOD2hZha1XV9lChoBko4////aAdLyGgIR0CM4VapxWDIdX2UKGgGSjj///9oB0vIaAhHQIzhwLPUrkN1fZQoaAZKOP///2gHS8hoCEdAjOF8Bltj1HV9lChoBko4////aAdLyGgIR0CM4ZMmF8G+dX2UKGgGSjj///9oB0vIaAhHQIzhaN83Mpx1fZQoaAZKOP///2gHS8hoCEdAjOGKaG5+Y3V9lChoBko4////aAdLyGgIR0CM4Yrgflp5dX2UKGgGSjj///9oB0vIaAhHQIziHmcOLBN1fZQoaAZKOP///2gHS8hoCEdAjOHFXaJyhnV9lChoBko4////aAdLyGgIR0CM4nOu7pV0dX2UKGgGSjj///9oB0vIaAhHQIzibHGS6lN1fZQoaAZKOP///2gHS8hoCEdAjOL6TwDvE3V9lChoBko4////aAdLyGgIR0CM40c2itaIdX2UKGgGSjj///9oB0vIaAhHQIzjVZaFEiN1fZQoaAZKOP///2gHS8hoCEdAjOMnzQNTcnV9lChoBko4////aAdLyGgIR0CM4vpcophGdX2UKGgGSjj///9oB0vIaAhHQIzjWlyimEZ1fZQoaAZKOP///2gHS8hoCEdAjOPCI1tO23V9lChoBko4////aAdLyGgIR0CM4316mfoSdX2UKGgGSjj///9oB0vIaAhHQIzjlMdtEXt1fZQoaAZKOP///2gHS8hoCEdAjONqbjLjgnV9lChoBko4////aAdLyGgIR0CM44vHtF8YdX2UKGgGSjj///9oB0vIaAhHQIzjjByjpLV1fZQoaAZKOP///2gHS8hoCEdAjOQfozN2T3V9lChoBko4////aAdLyGgIR0CM48Yu01IidX2UKGgGSjj///9oB0vIaAhHQIzkdEuxrzp1ZS4="
68
+ },
69
+ "ep_success_buffer": {
70
+ ":type:": "<class 'collections.deque'>",
71
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
72
+ },
73
+ "_n_updates": 612,
74
+ "n_steps": 1024,
75
+ "gamma": 0.999,
76
+ "gae_lambda": 0.98,
77
+ "ent_coef": 0.01,
78
+ "vf_coef": 0.5,
79
+ "max_grad_norm": 0.5,
80
+ "batch_size": 64,
81
+ "n_epochs": 4,
82
+ "clip_range": {
83
+ ":type:": "<class 'function'>",
84
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
85
+ },
86
+ "clip_range_vf": null,
87
+ "normalize_advantage": true,
88
+ "target_kl": null
89
+ }
Taxi-v3-version_0_0_2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8d1fdcf96520dc079c1ba71e29af3d0a60219aec2436d516b9264b357aebeb5
3
+ size 592697
Taxi-v3-version_0_0_2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8c108d4ccbb9d43574417ea925bde6c56fe0e3fe3d87a4f398f8164085c01f1
3
+ size 295617
Taxi-v3-version_0_0_2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Taxi-v3-version_0_0_2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d632a41f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d632a4280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d632a4310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d632a43a0>", "_build": "<function ActorCriticPolicy._build at 0x7f2d632a4430>", "forward": "<function ActorCriticPolicy.forward at 0x7f2d632a44c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d632a4550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2d632a45e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d632a4670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d632a4700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d632a4790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2d6329d7b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgwAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRN9AGMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lGgHk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==", "n": 500, "_shape": [], "dtype": "int64", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 6, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2506752, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670431990095875901, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAEoAAAAAAAAAqAEAAAAAAACuAAAAAAAAAOMBAAAAAAAA4gEAAAAAAADUAQAAAAAAAKgBAAAAAAAAAQAAAAAAAACDAQAAAAAAACEBAAAAAAAASgAAAAAAAACpAAAAAAAAAM8BAAAAAAAApgAAAAAAAACoAQAAAAAAAKgBAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVUAoAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRKOP///4wBbJRLyIwBdJRHQIyxko2GZeB1fZQoaAZKOP///2gHS8hoCEdAjLIl7D2rXHV9lChoBko4////aAdLyGgIR0CMsc1gpjMFdX2UKGgGSjj///9oB0vIaAhHQIyyfBJqZc91fZQoaAZKOP///2gHS8hoCEdAjLJ1nmJWNnV9lChoBko4////aAdLyGgIR0CMswwYcebNdX2UKGgGSjj///9oB0vIaAhHQIyzWVNYbKl1fZQoaAZKOP///2gHS8hoCEdAjLNnxBmf5HV9lChoBko4////aAdLyGgIR0CMs0A9V3lkdX2UKGgGSjj///9oB0vIaAhHQIyzEtkFwDN1fZQoaAZKOP///2gHS8hoCEdAjLN1C5VfeHV9lChoBko4////aAdLyGgIR0CMs9zp5eJIdX2UKGgGSjj///9oB0vIaAhHQIyzmD15B1N1fZQoaAZKOP///2gHS8hoCEdAjLOvwVj7RHV9lChoBko4////aAdLyGgIR0CMs4VzIV/MdX2UKGgGSjj///9oB0vIaAhHQIyzpuhsZYR1fZQoaAZKOP///2gHS8hoCEdAjLOnmaH9FXV9lChoBko4////aAdLyGgIR0CMtDtWMju8dX2UKGgGSjj///9oB0vIaAhHQIyz4lhPTG51fZQoaAZKOP///2gHS8hoCEdAjNo6Ymb9ZXV9lChoBko4////aAdLyGgIR0CM2jMvAXVLdX2UKGgGSjj///9oB0vIaAhHQIzawQDmr811fZQoaAZKOP///2gHS8hoCEdAjNsOez2OAHV9lChoBko4////aAdLyGgIR0CM2xziCJ40dX2UKGgGSjj///9oB0vIaAhHQIza72alUId1fZQoaAZKOP///2gHS8hoCEdAjNrB8YyftnV9lChoBko4////aAdLyGgIR0CM2yH8jzI4dX2UKGgGSjj///9oB0vIaAhHQIzbiylenht1fZQoaAZKOP///2gHS8hoCEdAjNtGe+VTrHV9lChoBko4////aAdLyGgIR0CM213zMA3ldX2UKGgGSjj///9oB0vIaAhHQIzbM6RyOrB1fZQoaAZKOP///2gHS8hoCEdAjNtU9IPK+3V9lChoBko4////aAdLyGgIR0CM21Xe3x4IdX2UKGgGSjj///9oB0vIaAhHQIzb6V0Lc9J1fZQoaAZKOP///2gHS8hoCEdAjNuP6TGHYnV9lChoBko4////aAdLyGgIR0CM3D6Ww/xEdX2UKGgGSjj///9oB0vIaAhHQIzcN05lvqF1fZQoaAZKOP///2gHS8hoCEdAjNzGUOd5IHV9lChoBko4////aAdLyGgIR0CM3RNTtLL7dX2UKGgGSjj///9oB0vIaAhHQIzdImsvIwN1fZQoaAZKOP///2gHS8hoCEdAjNz0ipvP1XV9lChoBko4////aAdLyGgIR0CM3McVgx8EdX2UKGgGSjj///9oB0vIaAhHQIzdJyfcvdx1fZQoaAZKOP///2gHS8hoCEdAjN2OyeI2wXV9lChoBko4////aAdLyGgIR0CM3Uoc7yQQdX2UKGgGSjj///9oB0vIaAhHQIzdYjQiRnx1fZQoaAZKOP///2gHS8hoCEdAjN03++/QB3V9lChoBko4////aAdLyGgIR0CM3VmxMWXUdX2UKGgGSjj///9oB0vIaAhHQIzdW5jH4oJ1fZQoaAZKOP///2gHS8hoCEdAjN3vegte2XV9lChoBko4////aAdLyGgIR0CM3Zn9vS+hdX2UKGgGSjj///9oB0vIaAhHQIzeTsv7FbV1fZQoaAZKOP///2gHS8hoCEdAjN5HIZIg/3V9lChoBko4////aAdLyGgIR0CM3tWH1vl2dX2UKGgGSjj///9oB0vIaAhHQIzfKZQYUFl1fZQoaAZKOP///2gHS8hoCEdAjN85mAbyY3V9lChoBko4////aAdLyGgIR0CM3wylenhsdX2UKGgGSjj///9oB0vIaAhHQIze3y/bj951fZQoaAZKOP///2gHS8hoCEdAjN8/ms/6f3V9lChoBko4////aAdLyGgIR0CM36dMj/uLdX2UKGgGSjj///9oB0vIaAhHQIzfYqAjIJZ1fZQoaAZKOP///2gHS8hoCEdAjN951vES/XV9lChoBko4////aAdLyGgIR0CM30+CbtqpdX2UKGgGSjj///9oB0vIaAhHQIzfcO5J9Rd1fZQoaAZKOP///2gHS8hoCEdAjN9yJsO5KHV9lChoBko4////aAdLyGgIR0CM4AXWOIZZdX2UKGgGSjj///9oB0vIaAhHQIzfrXjENvx1fZQoaAZKOP///2gHS8hoCEdAjOBcrZrYXnV9lChoBko4////aAdLyGgIR0CM4FtE5QxfdX2UKGgGSjj///9oB0vIaAhHQIzg9RP420l1fZQoaAZKOP///2gHS8hoCEdAjOFDCpFTenV9lChoBko4////aAdLyGgIR0CM4VFy7wrldX2UKGgGSjj///9oB0vIaAhHQIzhI/qxC6Z1fZQoaAZKOP///2gHS8hoCEdAjOD2hZha1XV9lChoBko4////aAdLyGgIR0CM4VapxWDIdX2UKGgGSjj///9oB0vIaAhHQIzhwLPUrkN1fZQoaAZKOP///2gHS8hoCEdAjOF8Bltj1HV9lChoBko4////aAdLyGgIR0CM4ZMmF8G+dX2UKGgGSjj///9oB0vIaAhHQIzhaN83Mpx1fZQoaAZKOP///2gHS8hoCEdAjOGKaG5+Y3V9lChoBko4////aAdLyGgIR0CM4Yrgflp5dX2UKGgGSjj///9oB0vIaAhHQIziHmcOLBN1fZQoaAZKOP///2gHS8hoCEdAjOHFXaJyhnV9lChoBko4////aAdLyGgIR0CM4nOu7pV0dX2UKGgGSjj///9oB0vIaAhHQIzibHGS6lN1fZQoaAZKOP///2gHS8hoCEdAjOL6TwDvE3V9lChoBko4////aAdLyGgIR0CM40c2itaIdX2UKGgGSjj///9oB0vIaAhHQIzjVZaFEiN1fZQoaAZKOP///2gHS8hoCEdAjOMnzQNTcnV9lChoBko4////aAdLyGgIR0CM4vpcophGdX2UKGgGSjj///9oB0vIaAhHQIzjWlyimEZ1fZQoaAZKOP///2gHS8hoCEdAjOPCI1tO23V9lChoBko4////aAdLyGgIR0CM4316mfoSdX2UKGgGSjj///9oB0vIaAhHQIzjlMdtEXt1fZQoaAZKOP///2gHS8hoCEdAjONqbjLjgnV9lChoBko4////aAdLyGgIR0CM44vHtF8YdX2UKGgGSjj///9oB0vIaAhHQIzjjByjpLV1fZQoaAZKOP///2gHS8hoCEdAjOQfozN2T3V9lChoBko4////aAdLyGgIR0CM48Yu01IidX2UKGgGSjj///9oB0vIaAhHQIzkdEuxrzp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 612, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -200.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-07T17:08:43.896164"}