--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.60625 --- # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2024 - Accuracy: 0.6062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 10 | 1.3600 | 0.4938 | | No log | 2.0 | 20 | 1.2908 | 0.4938 | | No log | 3.0 | 30 | 1.2799 | 0.5 | | No log | 4.0 | 40 | 1.2110 | 0.5312 | | No log | 5.0 | 50 | 1.2178 | 0.5188 | | No log | 6.0 | 60 | 1.2189 | 0.5188 | | No log | 7.0 | 70 | 1.2566 | 0.5375 | | No log | 8.0 | 80 | 1.1838 | 0.5687 | | No log | 9.0 | 90 | 1.2730 | 0.55 | | No log | 10.0 | 100 | 1.2329 | 0.575 | | No log | 11.0 | 110 | 1.2224 | 0.5563 | | No log | 12.0 | 120 | 1.2729 | 0.5563 | | No log | 13.0 | 130 | 1.2678 | 0.5687 | | No log | 14.0 | 140 | 1.2423 | 0.5687 | | No log | 15.0 | 150 | 1.1704 | 0.6312 | | No log | 16.0 | 160 | 1.2925 | 0.5625 | | No log | 17.0 | 170 | 1.3557 | 0.5312 | | No log | 18.0 | 180 | 1.2951 | 0.5687 | | No log | 19.0 | 190 | 1.2594 | 0.5625 | | No log | 20.0 | 200 | 1.2463 | 0.5687 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3