--- license: cc-by-nc-4.0 base_model: facebook/nllb-200-distilled-600M tags: - generated_from_trainer datasets: - nusatranslation_mt metrics: - sacrebleu model-index: - name: bbc-to-ind-nmt-v5 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: nusatranslation_mt type: nusatranslation_mt config: nusatranslation_mt_btk_ind_source split: test args: nusatranslation_mt_btk_ind_source metrics: - name: Sacrebleu type: sacrebleu value: 38.4814 --- # bbc-to-ind-nmt-v5 This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the nusatranslation_mt dataset. It achieves the following results on the evaluation set: - Loss: 1.2310 - Sacrebleu: 38.4814 - Gen Len: 37.8455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Sacrebleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:-------:| | 3.4154 | 1.0 | 1650 | 1.2829 | 33.2857 | 37.9245 | | 1.1633 | 2.0 | 3300 | 1.1418 | 36.6342 | 37.407 | | 0.9377 | 3.0 | 4950 | 1.1148 | 38.0023 | 37.17 | | 0.795 | 4.0 | 6600 | 1.1197 | 38.2402 | 37.3695 | | 0.6827 | 5.0 | 8250 | 1.1465 | 38.3719 | 37.315 | | 0.5937 | 6.0 | 9900 | 1.1642 | 38.3424 | 37.547 | | 0.5216 | 7.0 | 11550 | 1.1917 | 38.56 | 37.8515 | | 0.466 | 8.0 | 13200 | 1.2079 | 38.6061 | 37.6135 | | 0.425 | 9.0 | 14850 | 1.2228 | 38.4918 | 37.928 | | 0.3995 | 10.0 | 16500 | 1.2310 | 38.4814 | 37.8455 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.14.6 - Tokenizers 0.19.1