remeajayi commited on
Commit
b87ecab
·
1 Parent(s): 96b03ab

updated model card

Browse files
Files changed (1) hide show
  1. README.md +3 -9
README.md CHANGED
@@ -6,24 +6,18 @@ tags:
6
  - anomaly-detection
7
  ---
8
 
9
- ## Model description
10
-
11
- Timeseries anomaly detection using an Autoencoder
12
 
13
  This repo contains the model and the notebook to this [Keras example on Timeseries anomaly detection using an Autoencoder.](https://keras.io/examples/timeseries/timeseries_anomaly_detection/)
14
 
15
  Full credits to: [Pavithra Vijay](https://github.com/pavithrasv)
16
 
17
 
18
- ## Intended uses & limitations
19
-
20
- More information needed
21
 
22
- ## Training and evaluation data
23
 
24
- More information needed
25
 
26
- ## Training procedure
27
 
28
  ### Training hyperparameters
29
 
 
6
  - anomaly-detection
7
  ---
8
 
9
+ ## Timeseries anomaly detection using an Autoencoder
 
 
10
 
11
  This repo contains the model and the notebook to this [Keras example on Timeseries anomaly detection using an Autoencoder.](https://keras.io/examples/timeseries/timeseries_anomaly_detection/)
12
 
13
  Full credits to: [Pavithra Vijay](https://github.com/pavithrasv)
14
 
15
 
16
+ ## Background and Datasets
 
 
17
 
18
+ This script demonstrates how you can use a reconstruction convolutional autoencoder model to detect anomalies in timeseries data. We will use the [Numenta Anomaly Benchmark(NAB)](https://www.kaggle.com/datasets/boltzmannbrain/nab) dataset. It provides artifical timeseries data containing labeled anomalous periods of behavior. Data are ordered, timestamped, single-valued metrics.
19
 
 
20
 
 
21
 
22
  ### Training hyperparameters
23