keshan commited on
Commit
0e86dde
1 Parent(s): 4e7c101

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1659.20 +/- 164.55
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7499a13c8548998e0c2fd68a214a466608b8cfef575203266bcdd4caa6dcb21a
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff28c6cf70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff28c71040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff28c710d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff28c71160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7eff28c711f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7eff28c71280>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eff28c71310>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff28c713a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7eff28c71430>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff28c714c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff28c71550>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff28c715e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7eff28c6d240>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674011645686143024,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEnktjurBaq/7p2Vvle8wD+AU2q/cAAWv8/UHr8/sSq/e9MDP7H0YT8rr0Q8U/8ZvhWyzb6BJGI/3G9BPxSTYL+cgja/LrDTPpdrcz62lfo9KxnyvseCs74BNAU+ZhagP2nhRD/FBQk/LtoVP0Tkm78ZPQ8+BTWWvh+DCj9M27U/k9K7PtB0qz94GGa/RmKuvnSkOz+Szwi9lJUkvza33T0VVtS9K9niP+QMQj82aT6/Q/0OvhJRCEBddYa+4nI0vz2CCb93maM+Kp2VPxVz1D6bb6a/xQUJPy7aFT9/MlI/Mt+0vtTdET7MQRg/9QKCP8KpuT8cAkE/aD/MvtMN8b5xNzs/sqhavM3rI78BCFQ/CCNCO1XNUD/bHj4/arJgv22Tnj9VAsU/fFePPcPPZL8lTb2+QMY4vziB+D7Glji/m2+mv8UFCT8wq9q/fzJSP32lOj+3z7O+WswFP2+qeD+IlDC/+g7iPr9y4b4TBS6/9yI9PyOdGr7TfA4/EjbhvQQHkL/gFhw/VnejPY7XJz/R9ZO+G10vv4XePb5O5Uo/PnrQvsYckT/eLhy/HaYKP2nhRD+kJO+/LtoVP0Tkm7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACZJdg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJ5OyOwAAAAA7awDAAAAAAKVIED4AAAAAjgj1PwAAAAC5FnM6AAAAAG573z8AAAAAgnwPvgAAAACQlvW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATxVXtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCY8qT0AAAAABCTjvwAAAADyJfs9AAAAACyU9j8AAAAA61m0vQAAAABvIeg/AAAAAEsSuz0AAAAASObdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpTyLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICnKxA+AAAAAJRm8b8AAAAAGYT6PAAAAADoqPY/AAAAAL2Xkb0AAAAABi3ePwAAAAAX2509AAAAADn/3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+CSs0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAb6G8PAAAAACVpOu/AAAAAP9cxb0AAAAA0lABQAAAAADoUBA+AAAAAFaQ5T8AAAAA/55QPAAAAACxD+m/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHwEFJxvNvCMAWyUTegDjAF0lEdAp309ld1Md3V9lChoBkdAlVHhMBZIQWgHTegDaAhHQKd+MjcmBvt1fZQoaAZHQJcNp4D9wWFoB03oA2gIR0CnfvB2fTTfdX2UKGgGR0CQIoj9GZuyaAdN6ANoCEdAp4MWLrHEM3V9lChoBkdAjQSqKHfuTmgHTegDaAhHQKeJbj0cwQF1fZQoaAZHQJVg6GN70FtoB03oA2gIR0Cnil9hy8zzdX2UKGgGR0CZup4593KTaAdN6ANoCEdAp4scgjhUBHV9lChoBkdAm2ZO7+T/yWgHTegDaAhHQKePRzreImB1fZQoaAZHQJRnwE8q4H5oB03oA2gIR0CnlaiwbEP2dX2UKGgGR0CZjBOHFglXaAdN6ANoCEdAp5aYGQjlgnV9lChoBkdAmSgLyUcGT2gHTegDaAhHQKeXSjv/io91fZQoaAZHQJAj2x3V091oB03oA2gIR0Cnm204R28qdX2UKGgGR0CVsXzJp35faAdN6ANoCEdAp6HZc7hegXV9lChoBkdAlp27jYI0ImgHTegDaAhHQKei3YPGyX51fZQoaAZHQJJ6bxTbWVhoB03oA2gIR0Cno5OUD+zddX2UKGgGR0CTFmoBaLXMaAdN6ANoCEdAp6edeUpuuXV9lChoBkdAmthDiXIEKWgHTegDaAhHQKeuBZlnRLN1fZQoaAZHQJk1L28IzFdoB03oA2gIR0Cnrvs0P6KtdX2UKGgGR0Ca2JGRmseXaAdN6ANoCEdAp6+sdkrf+HV9lChoBkdAmNiJVS4vvmgHTegDaAhHQKez6yjYZl51fZQoaAZHQJoTvdj5KvpoB03oA2gIR0CnukFEJBw/dX2UKGgGR0CZ31FZgXuWaAdN6ANoCEdAp7sz+ee4C3V9lChoBkdAmlwJ+tr9EWgHTegDaAhHQKe75R3u/lB1fZQoaAZHQJkc6ovSMLpoB03oA2gIR0CnwBMu3+dcdX2UKGgGR0CYyAGgi/wiaAdN6ANoCEdAp8aGkWRA8nV9lChoBkdAl9Tzghr302gHTegDaAhHQKfHgZl4C6p1fZQoaAZHQJC5mMglnh9oB03oA2gIR0CnyDPFm4AkdX2UKGgGR0CSdpnB+F10aAdN6ANoCEdAp8xcS00FbHV9lChoBkdAknweQZGayGgHTegDaAhHQKfSn446wMZ1fZQoaAZHQI+GGV3Ux21oB03oA2gIR0Cn04h7E5yVdX2UKGgGR0CKuav3ai9JaAdN6ANoCEdAp9Q+9DhLoXV9lChoBkdAkhhrpu/DcmgHTegDaAhHQKfYcUj9n9N1fZQoaAZHQJrtCwgTyrhoB03oA2gIR0Cn3uCj1wo9dX2UKGgGR0CRixAzHjp+aAdN6ANoCEdAp9/UfxMFlnV9lChoBkdAZNnnAZbY9WgHTegDaAhHQKfgg+3Ytg91fZQoaAZHQJmw56w+t8xoB03oA2gIR0Cn5JaC17Y1dX2UKGgGR0CUS8lrdnCgaAdN6ANoCEdAp+rgmNR3vHV9lChoBkdAmSS+rZJ04mgHTegDaAhHQKfryOBDohZ1fZQoaAZHQJdBdKEnLJVoB03oA2gIR0Cn7IDwH7gsdX2UKGgGR0CQ+5I3R5TqaAdN6ANoCEdAp/CW9Htnf3V9lChoBkdAkutr127nPmgHTegDaAhHQKf22dIXj2l1fZQoaAZHQJXzmt0V8CxoB03oA2gIR0Cn97xW912adX2UKGgGR0CTpR7wKBuoaAdN6ANoCEdAp/h0XJo0ynV9lChoBkdAmzm/9tMwlGgHTegDaAhHQKf8eKF7D2t1fZQoaAZHQJaINxOtW+5oB03oA2gIR0CoAsQ40dildX2UKGgGR0CMdW+BYmsvaAdN6ANoCEdAqAOzDqGDc3V9lChoBkdAk8VUSElE7WgHTegDaAhHQKgEZBzmwJR1fZQoaAZHQJMo2WldkaxoB03oA2gIR0CoCHmnn+yadX2UKGgGR0CUbR0EHMUzaAdN6ANoCEdAqA72OXE61nV9lChoBkdAlPcCZnctXmgHTegDaAhHQKgP44iosI51fZQoaAZHQJfh2eAd4mloB03oA2gIR0CoEJhJiAlOdX2UKGgGR0CW0HdzXBgvaAdN6ANoCEdAqBSuo1k1/HV9lChoBkdAlk29b9qDb2gHTegDaAhHQKgbA2cawUx1fZQoaAZHQJVyzCZWq95oB03oA2gIR0CoG/XAEdNndX2UKGgGR0CZGnhoduHfaAdN6ANoCEdAqByszhxYJXV9lChoBkdAkla08V58jWgHTegDaAhHQKggy/pt78h1fZQoaAZHQF4vIMBp5/toB03oA2gIR0CoJzYXGff5dX2UKGgGR0CVr9iMo+fRaAdN6ANoCEdAqCgiq0dBB3V9lChoBkdAlBu+W0JF9mgHTegDaAhHQKgo0ZdfLLZ1fZQoaAZHQIzne9SMtK9oB03oA2gIR0CoLQQAuIykdX2UKGgGR0CX+otcv/R3aAdN6ANoCEdAqDOTr7fpEHV9lChoBkdAl0XQ9ic5KmgHTegDaAhHQKg0hmlqJuV1fZQoaAZHQHyrPwd8zANoB03oA2gIR0CoNTvv0AcUdX2UKGgGR0CSjmFNL128aAdN6ANoCEdAqDlV3fQ8fXV9lChoBkdAlSwmw3YL9mgHTegDaAhHQKg/v22XsxB1fZQoaAZHQIqQ6pcX3xpoB03oA2gIR0CoQKo7/4qPdX2UKGgGR0CYem+x4Y78aAdN6ANoCEdAqEFZrzoUz3V9lChoBkdAk+5Y/RmbsmgHTegDaAhHQKhFYtwrDqJ1fZQoaAZHQJTE/H5rP+poB03oA2gIR0CoS+9B8hLXdX2UKGgGR0CXIoCHh0heaAdN6ANoCEdAqEzcKArhBXV9lChoBkdAlkXhhDw6Q2gHTegDaAhHQKhNkNrj5sV1fZQoaAZHQIGyE54nndRoB03oA2gIR0CoUbB0ZFXrdX2UKGgGR0CVbpsg+yJLaAdN6ANoCEdAqFgAmeDnNnV9lChoBkdAmEGv4EfT1GgHTegDaAhHQKhY939rGip1fZQoaAZHQJbrKkTHsC1oB03oA2gIR0CoWaxCx/utdX2UKGgGR0CZyIeWv8qGaAdN6ANoCEdAqF3Arxy4nXV9lChoBkdAmKW0z9CNTGgHTegDaAhHQKhj/senyd51fZQoaAZHQJbea8K5TZRoB03oA2gIR0CoZOSaVlf7dX2UKGgGR0CZo9tPHktFaAdN6ANoCEdAqGWOJHiFTXV9lChoBkdAk3mOdbxEv2gHTegDaAhHQKhpheY2Kl51fZQoaAZHQJnmHl+3H7xoB03oA2gIR0Cob9Zof0VadX2UKGgGR0CYYfd6LOzIaAdN6ANoCEdAqHDH/T9bYHV9lChoBkdAljxkvXbudGgHTegDaAhHQKhxfMjeKsN1fZQoaAZHQJj1uquKXOZoB03oA2gIR0CodZWi+L3sdX2UKGgGR0CZTsx2B8QaaAdN6ANoCEdAqHvkQGwA2nV9lChoBkdAlHYYVEd/8WgHTegDaAhHQKh80OPvKEF1fZQoaAZHQJfn74M4LkVoB03oA2gIR0CofYLeANG3dX2UKGgGR0CaeIF4LThHaAdN6ANoCEdAqIHHDvVmSXV9lChoBkdAi22DTSb6QGgHTegDaAhHQKiINgTh5xB1fZQoaAZHQJtRf58BuGdoB03oA2gIR0CoiS5sCT2WdX2UKGgGR0CbGjO938oAaAdN6ANoCEdAqIncv0yxiXV9lChoBkdAmVnZbhWHUWgHTegDaAhHQKiN7wZOzpp1fZQoaAZHQJzfvbGm1ploB03oA2gIR0ColEAFgUlBdX2UKGgGR0Calz+DvmYCaAdN6ANoCEdAqJUmDSPU8XV9lChoBkdAmjqr26ClJ2gHTegDaAhHQKiV6qxTsIF1fZQoaAZHQJjVOMPz4DdoB03oA2gIR0ComgFpXZGsdX2UKGgGR0CbPNBjFyaNaAdN6ANoCEdAqKBTDKoybnV9lChoBkdAllxV8CxNZmgHTegDaAhHQKihQ+gUUPB1fZQoaAZHQJmtQ75mAb1oB03oA2gIR0CoofSULUkOdX2UKGgGR0CZ8l2RJVbSaAdN6ANoCEdAqKYCk690zXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4d90604bec1e6052e7117fdd321dc91f24eb737f0d896a319efaaa809519b18
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8136ff46b708db9f6ba99ca523dd6b1338c4865ef87d96e9a0acf6be958924fc
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff28c6cf70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff28c71040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff28c710d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff28c71160>", "_build": "<function ActorCriticPolicy._build at 0x7eff28c711f0>", "forward": "<function ActorCriticPolicy.forward at 0x7eff28c71280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eff28c71310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff28c713a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7eff28c71430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff28c714c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff28c71550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff28c715e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7eff28c6d240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674011645686143024, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEnktjurBaq/7p2Vvle8wD+AU2q/cAAWv8/UHr8/sSq/e9MDP7H0YT8rr0Q8U/8ZvhWyzb6BJGI/3G9BPxSTYL+cgja/LrDTPpdrcz62lfo9KxnyvseCs74BNAU+ZhagP2nhRD/FBQk/LtoVP0Tkm78ZPQ8+BTWWvh+DCj9M27U/k9K7PtB0qz94GGa/RmKuvnSkOz+Szwi9lJUkvza33T0VVtS9K9niP+QMQj82aT6/Q/0OvhJRCEBddYa+4nI0vz2CCb93maM+Kp2VPxVz1D6bb6a/xQUJPy7aFT9/MlI/Mt+0vtTdET7MQRg/9QKCP8KpuT8cAkE/aD/MvtMN8b5xNzs/sqhavM3rI78BCFQ/CCNCO1XNUD/bHj4/arJgv22Tnj9VAsU/fFePPcPPZL8lTb2+QMY4vziB+D7Glji/m2+mv8UFCT8wq9q/fzJSP32lOj+3z7O+WswFP2+qeD+IlDC/+g7iPr9y4b4TBS6/9yI9PyOdGr7TfA4/EjbhvQQHkL/gFhw/VnejPY7XJz/R9ZO+G10vv4XePb5O5Uo/PnrQvsYckT/eLhy/HaYKP2nhRD+kJO+/LtoVP0Tkm7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACZJdg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJ5OyOwAAAAA7awDAAAAAAKVIED4AAAAAjgj1PwAAAAC5FnM6AAAAAG573z8AAAAAgnwPvgAAAACQlvW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATxVXtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCY8qT0AAAAABCTjvwAAAADyJfs9AAAAACyU9j8AAAAA61m0vQAAAABvIeg/AAAAAEsSuz0AAAAASObdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpTyLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICnKxA+AAAAAJRm8b8AAAAAGYT6PAAAAADoqPY/AAAAAL2Xkb0AAAAABi3ePwAAAAAX2509AAAAADn/3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+CSs0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAb6G8PAAAAACVpOu/AAAAAP9cxb0AAAAA0lABQAAAAADoUBA+AAAAAFaQ5T8AAAAA/55QPAAAAACxD+m/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHwEFJxvNvCMAWyUTegDjAF0lEdAp309ld1Md3V9lChoBkdAlVHhMBZIQWgHTegDaAhHQKd+MjcmBvt1fZQoaAZHQJcNp4D9wWFoB03oA2gIR0CnfvB2fTTfdX2UKGgGR0CQIoj9GZuyaAdN6ANoCEdAp4MWLrHEM3V9lChoBkdAjQSqKHfuTmgHTegDaAhHQKeJbj0cwQF1fZQoaAZHQJVg6GN70FtoB03oA2gIR0Cnil9hy8zzdX2UKGgGR0CZup4593KTaAdN6ANoCEdAp4scgjhUBHV9lChoBkdAm2ZO7+T/yWgHTegDaAhHQKePRzreImB1fZQoaAZHQJRnwE8q4H5oB03oA2gIR0CnlaiwbEP2dX2UKGgGR0CZjBOHFglXaAdN6ANoCEdAp5aYGQjlgnV9lChoBkdAmSgLyUcGT2gHTegDaAhHQKeXSjv/io91fZQoaAZHQJAj2x3V091oB03oA2gIR0Cnm204R28qdX2UKGgGR0CVsXzJp35faAdN6ANoCEdAp6HZc7hegXV9lChoBkdAlp27jYI0ImgHTegDaAhHQKei3YPGyX51fZQoaAZHQJJ6bxTbWVhoB03oA2gIR0Cno5OUD+zddX2UKGgGR0CTFmoBaLXMaAdN6ANoCEdAp6edeUpuuXV9lChoBkdAmthDiXIEKWgHTegDaAhHQKeuBZlnRLN1fZQoaAZHQJk1L28IzFdoB03oA2gIR0Cnrvs0P6KtdX2UKGgGR0Ca2JGRmseXaAdN6ANoCEdAp6+sdkrf+HV9lChoBkdAmNiJVS4vvmgHTegDaAhHQKez6yjYZl51fZQoaAZHQJoTvdj5KvpoB03oA2gIR0CnukFEJBw/dX2UKGgGR0CZ31FZgXuWaAdN6ANoCEdAp7sz+ee4C3V9lChoBkdAmlwJ+tr9EWgHTegDaAhHQKe75R3u/lB1fZQoaAZHQJkc6ovSMLpoB03oA2gIR0CnwBMu3+dcdX2UKGgGR0CYyAGgi/wiaAdN6ANoCEdAp8aGkWRA8nV9lChoBkdAl9Tzghr302gHTegDaAhHQKfHgZl4C6p1fZQoaAZHQJC5mMglnh9oB03oA2gIR0CnyDPFm4AkdX2UKGgGR0CSdpnB+F10aAdN6ANoCEdAp8xcS00FbHV9lChoBkdAknweQZGayGgHTegDaAhHQKfSn446wMZ1fZQoaAZHQI+GGV3Ux21oB03oA2gIR0Cn04h7E5yVdX2UKGgGR0CKuav3ai9JaAdN6ANoCEdAp9Q+9DhLoXV9lChoBkdAkhhrpu/DcmgHTegDaAhHQKfYcUj9n9N1fZQoaAZHQJrtCwgTyrhoB03oA2gIR0Cn3uCj1wo9dX2UKGgGR0CRixAzHjp+aAdN6ANoCEdAp9/UfxMFlnV9lChoBkdAZNnnAZbY9WgHTegDaAhHQKfgg+3Ytg91fZQoaAZHQJmw56w+t8xoB03oA2gIR0Cn5JaC17Y1dX2UKGgGR0CUS8lrdnCgaAdN6ANoCEdAp+rgmNR3vHV9lChoBkdAmSS+rZJ04mgHTegDaAhHQKfryOBDohZ1fZQoaAZHQJdBdKEnLJVoB03oA2gIR0Cn7IDwH7gsdX2UKGgGR0CQ+5I3R5TqaAdN6ANoCEdAp/CW9Htnf3V9lChoBkdAkutr127nPmgHTegDaAhHQKf22dIXj2l1fZQoaAZHQJXzmt0V8CxoB03oA2gIR0Cn97xW912adX2UKGgGR0CTpR7wKBuoaAdN6ANoCEdAp/h0XJo0ynV9lChoBkdAmzm/9tMwlGgHTegDaAhHQKf8eKF7D2t1fZQoaAZHQJaINxOtW+5oB03oA2gIR0CoAsQ40dildX2UKGgGR0CMdW+BYmsvaAdN6ANoCEdAqAOzDqGDc3V9lChoBkdAk8VUSElE7WgHTegDaAhHQKgEZBzmwJR1fZQoaAZHQJMo2WldkaxoB03oA2gIR0CoCHmnn+yadX2UKGgGR0CUbR0EHMUzaAdN6ANoCEdAqA72OXE61nV9lChoBkdAlPcCZnctXmgHTegDaAhHQKgP44iosI51fZQoaAZHQJfh2eAd4mloB03oA2gIR0CoEJhJiAlOdX2UKGgGR0CW0HdzXBgvaAdN6ANoCEdAqBSuo1k1/HV9lChoBkdAlk29b9qDb2gHTegDaAhHQKgbA2cawUx1fZQoaAZHQJVyzCZWq95oB03oA2gIR0CoG/XAEdNndX2UKGgGR0CZGnhoduHfaAdN6ANoCEdAqByszhxYJXV9lChoBkdAkla08V58jWgHTegDaAhHQKggy/pt78h1fZQoaAZHQF4vIMBp5/toB03oA2gIR0CoJzYXGff5dX2UKGgGR0CVr9iMo+fRaAdN6ANoCEdAqCgiq0dBB3V9lChoBkdAlBu+W0JF9mgHTegDaAhHQKgo0ZdfLLZ1fZQoaAZHQIzne9SMtK9oB03oA2gIR0CoLQQAuIykdX2UKGgGR0CX+otcv/R3aAdN6ANoCEdAqDOTr7fpEHV9lChoBkdAl0XQ9ic5KmgHTegDaAhHQKg0hmlqJuV1fZQoaAZHQHyrPwd8zANoB03oA2gIR0CoNTvv0AcUdX2UKGgGR0CSjmFNL128aAdN6ANoCEdAqDlV3fQ8fXV9lChoBkdAlSwmw3YL9mgHTegDaAhHQKg/v22XsxB1fZQoaAZHQIqQ6pcX3xpoB03oA2gIR0CoQKo7/4qPdX2UKGgGR0CYem+x4Y78aAdN6ANoCEdAqEFZrzoUz3V9lChoBkdAk+5Y/RmbsmgHTegDaAhHQKhFYtwrDqJ1fZQoaAZHQJTE/H5rP+poB03oA2gIR0CoS+9B8hLXdX2UKGgGR0CXIoCHh0heaAdN6ANoCEdAqEzcKArhBXV9lChoBkdAlkXhhDw6Q2gHTegDaAhHQKhNkNrj5sV1fZQoaAZHQIGyE54nndRoB03oA2gIR0CoUbB0ZFXrdX2UKGgGR0CVbpsg+yJLaAdN6ANoCEdAqFgAmeDnNnV9lChoBkdAmEGv4EfT1GgHTegDaAhHQKhY939rGip1fZQoaAZHQJbrKkTHsC1oB03oA2gIR0CoWaxCx/utdX2UKGgGR0CZyIeWv8qGaAdN6ANoCEdAqF3Arxy4nXV9lChoBkdAmKW0z9CNTGgHTegDaAhHQKhj/senyd51fZQoaAZHQJbea8K5TZRoB03oA2gIR0CoZOSaVlf7dX2UKGgGR0CZo9tPHktFaAdN6ANoCEdAqGWOJHiFTXV9lChoBkdAk3mOdbxEv2gHTegDaAhHQKhpheY2Kl51fZQoaAZHQJnmHl+3H7xoB03oA2gIR0Cob9Zof0VadX2UKGgGR0CYYfd6LOzIaAdN6ANoCEdAqHDH/T9bYHV9lChoBkdAljxkvXbudGgHTegDaAhHQKhxfMjeKsN1fZQoaAZHQJj1uquKXOZoB03oA2gIR0CodZWi+L3sdX2UKGgGR0CZTsx2B8QaaAdN6ANoCEdAqHvkQGwA2nV9lChoBkdAlHYYVEd/8WgHTegDaAhHQKh80OPvKEF1fZQoaAZHQJfn74M4LkVoB03oA2gIR0CofYLeANG3dX2UKGgGR0CaeIF4LThHaAdN6ANoCEdAqIHHDvVmSXV9lChoBkdAi22DTSb6QGgHTegDaAhHQKiINgTh5xB1fZQoaAZHQJtRf58BuGdoB03oA2gIR0CoiS5sCT2WdX2UKGgGR0CbGjO938oAaAdN6ANoCEdAqIncv0yxiXV9lChoBkdAmVnZbhWHUWgHTegDaAhHQKiN7wZOzpp1fZQoaAZHQJzfvbGm1ploB03oA2gIR0ColEAFgUlBdX2UKGgGR0Calz+DvmYCaAdN6ANoCEdAqJUmDSPU8XV9lChoBkdAmjqr26ClJ2gHTegDaAhHQKiV6qxTsIF1fZQoaAZHQJjVOMPz4DdoB03oA2gIR0ComgFpXZGsdX2UKGgGR0CbPNBjFyaNaAdN6ANoCEdAqKBTDKoybnV9lChoBkdAllxV8CxNZmgHTegDaAhHQKihQ+gUUPB1fZQoaAZHQJmtQ75mAb1oB03oA2gIR0CoofSULUkOdX2UKGgGR0CZ8l2RJVbSaAdN6ANoCEdAqKYCk690zXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (984 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1659.1955170175643, "std_reward": 164.55287955276992, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T04:07:12.051973"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cba24a05b206da1995138682f0abec9da31d42fd4f1b655a8bd8cbfb610a8b7
3
+ size 2521