keshan commited on
Commit
138b722
1 Parent(s): 3614df7

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -4.64 +/- 1.78
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cb8712b2ee95e7445caba9ab30a01743b77b549d967c580365fd8ec632f7275
3
+ size 107987
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7eff28c71700>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7eff28c6d4e0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674014882274703156,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAFU3SPm3BBD0hxRk/FU3SPm3BBD0hxRk/FU3SPm3BBD0hxRk/FU3SPm3BBD0hxRk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7pjEv0eKOb+9S8a+I5vjPUaxjr8eEcC9cW50Pj88A789auO9UVvgPuu/Yj5ZCEY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAVTdI+bcEEPSHFGT+a0xI8GhgjO2PRjDwVTdI+bcEEPSHFGT+a0xI8GhgjO2PRjDwVTdI+bcEEPSHFGT+a0xI8GhgjO2PRjDwVTdI+bcEEPSHFGT+a0xI8GhgjO2PRjDyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.41074434 0.03241103 0.6006642 ]\n [0.41074434 0.03241103 0.6006642 ]\n [0.41074434 0.03241103 0.6006642 ]\n [0.41074434 0.03241103 0.6006642 ]]",
60
+ "desired_goal": "[[-1.535917 -0.7247662 -0.3872966 ]\n [ 0.11113574 -1.114785 -0.09378265]\n [ 0.23870255 -0.51263803 -0.11104248]\n [ 0.4381967 0.22143523 0.7735649 ]]",
61
+ "observation": "[[0.41074434 0.03241103 0.6006642 0.00896158 0.00248862 0.01718969]\n [0.41074434 0.03241103 0.6006642 0.00896158 0.00248862 0.01718969]\n [0.41074434 0.03241103 0.6006642 0.00896158 0.00248862 0.01718969]\n [0.41074434 0.03241103 0.6006642 0.00896158 0.00248862 0.01718969]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANY7nvEjbpr3i9gY+BtGyvHRqTb3yypE+X7KcPZTZz70kPcg9h0EEvqtwlL18rlI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.02826605 -0.08147293 0.13180116]\n [-0.02182819 -0.05015035 0.28475147]\n [ 0.07651209 -0.10148922 0.09777287]\n [-0.12915622 -0.07248052 0.05143593]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI46jcRC0N/b+UhpRSlIwBbJRLMowBdJRHQKRmfB0p3HJ1fZQoaAZoCWgPQwiy9KEL6psMwJSGlFKUaBVLMmgWR0CkZkFn7HhkdX2UKGgGaAloD0MI5C7CFOUyB8CUhpRSlGgVSzJoFkdApGYEIu5BknV9lChoBmgJaA9DCCC29GiqZxHAlIaUUpRoFUsyaBZHQKRlyXt0FKV1fZQoaAZoCWgPQwithsQ9lh4UwJSGlFKUaBVLMmgWR0CkZ3402tMgdX2UKGgGaAloD0MIzcth9x2DA8CUhpRSlGgVSzJoFkdApGdCVII4VHV9lChoBmgJaA9DCOBoxw2/WwbAlIaUUpRoFUsyaBZHQKRnBXAdn011fZQoaAZoCWgPQwjt0obD0sD7v5SGlFKUaBVLMmgWR0CkZsqveP7vdX2UKGgGaAloD0MIb9i2KLORFcCUhpRSlGgVSzJoFkdApGhejqOcUnV9lChoBmgJaA9DCCo6kst/KADAlIaUUpRoFUsyaBZHQKRoIqNIbwV1fZQoaAZoCWgPQwjHSPYINaMTwJSGlFKUaBVLMmgWR0CkZ+WicoYvdX2UKGgGaAloD0MIG2X9ZmI6EcCUhpRSlGgVSzJoFkdApGeq/TLGJnV9lChoBmgJaA9DCL4tWKoLGBrAlIaUUpRoFUsyaBZHQKRpPF+/gzh1fZQoaAZoCWgPQwi/C1uzlfcEwJSGlFKUaBVLMmgWR0CkaQBzNliCdX2UKGgGaAloD0MI5Nwm3Cvz9r+UhpRSlGgVSzJoFkdApGjDE74i5nV9lChoBmgJaA9DCEQzT64p0A7AlIaUUpRoFUsyaBZHQKRoiJO32El1fZQoaAZoCWgPQwjTo6mezH/2v5SGlFKUaBVLMmgWR0CkahPRRdhRdX2UKGgGaAloD0MI9SoyOiBpCsCUhpRSlGgVSzJoFkdApGnYbdadMHV9lChoBmgJaA9DCLXC9L2GQBvAlIaUUpRoFUsyaBZHQKRpm4x1xKh1fZQoaAZoCWgPQwjohTsXRhoCwJSGlFKUaBVLMmgWR0CkaWEXk5p8dX2UKGgGaAloD0MIVTNrKSB9GcCUhpRSlGgVSzJoFkdApGsHkWAPNHV9lChoBmgJaA9DCIy+gjRjEQvAlIaUUpRoFUsyaBZHQKRqy6QNkOJ1fZQoaAZoCWgPQwgZHCWvzuEQwJSGlFKUaBVLMmgWR0Ckao6CUX54dX2UKGgGaAloD0MI9aCgFK3MF8CUhpRSlGgVSzJoFkdApGpT1uivgXV9lChoBmgJaA9DCMfZdARwM/q/lIaUUpRoFUsyaBZHQKRr9qO938p1fZQoaAZoCWgPQwikjLgANKoFwJSGlFKUaBVLMmgWR0Cka7q2a2F4dX2UKGgGaAloD0MIB7MJMCz/CsCUhpRSlGgVSzJoFkdApGt9pblijXV9lChoBmgJaA9DCNCZtKm6BwjAlIaUUpRoFUsyaBZHQKRrQza9K291fZQoaAZoCWgPQwjwbI/ecN8RwJSGlFKUaBVLMmgWR0CkbN5TAFgVdX2UKGgGaAloD0MIveXqxyZZGsCUhpRSlGgVSzJoFkdApGyieRPoFHV9lChoBmgJaA9DCNP3GoLjMgLAlIaUUpRoFUsyaBZHQKRsZUQ04zd1fZQoaAZoCWgPQwgHtd/aiRIQwJSGlFKUaBVLMmgWR0CkbCrCFbmmdX2UKGgGaAloD0MIchdhinIpC8CUhpRSlGgVSzJoFkdApG3B/d69kHV9lChoBmgJaA9DCC4dc56xzwLAlIaUUpRoFUsyaBZHQKRthj1f3N91fZQoaAZoCWgPQwjh8e1dg/4AwJSGlFKUaBVLMmgWR0CkbUjsdDIBdX2UKGgGaAloD0MIY9UgzO3eEsCUhpRSlGgVSzJoFkdApG0ON3np0XV9lChoBmgJaA9DCE65wrtc5BfAlIaUUpRoFUsyaBZHQKRun6LwWnF1fZQoaAZoCWgPQwjYf52bNuMDwJSGlFKUaBVLMmgWR0CkbmQGnn+ydX2UKGgGaAloD0MIUwlP6PVnCcCUhpRSlGgVSzJoFkdApG4moNutOnV9lChoBmgJaA9DCCcuxysQnQrAlIaUUpRoFUsyaBZHQKRt6/X5FgF1fZQoaAZoCWgPQwjCoiJOJ3kdwJSGlFKUaBVLMmgWR0Ckb5+9i+cpdX2UKGgGaAloD0MIfJkoQuqmEsCUhpRSlGgVSzJoFkdApG9kiMYMv3V9lChoBmgJaA9DCDyHMlTFBBTAlIaUUpRoFUsyaBZHQKRvJ0ihWYF1fZQoaAZoCWgPQwjXaDnQQ+0JwJSGlFKUaBVLMmgWR0CkbuyCnP3SdX2UKGgGaAloD0MIMbJkjuW9AsCUhpRSlGgVSzJoFkdApHB00YTCcnV9lChoBmgJaA9DCMb5m1CIYBDAlIaUUpRoFUsyaBZHQKRwOOqebut1fZQoaAZoCWgPQwiQ3QVKCmwEwJSGlFKUaBVLMmgWR0Ckb/uNYKYzdX2UKGgGaAloD0MIVRLZB1n2DcCUhpRSlGgVSzJoFkdApG/A4CIUJ3V9lChoBmgJaA9DCCiAYmTJHADAlIaUUpRoFUsyaBZHQKRxXrBTGYN1fZQoaAZoCWgPQwindRvUfmsTwJSGlFKUaBVLMmgWR0CkcSLBj4HpdX2UKGgGaAloD0MIkfKTap9+E8CUhpRSlGgVSzJoFkdApHDlaIN3GHV9lChoBmgJaA9DCD8AqU2cHA3AlIaUUpRoFUsyaBZHQKRwqqlP8AJ1fZQoaAZoCWgPQwivfQG9cCcNwJSGlFKUaBVLMmgWR0CkcjQRoRI0dX2UKGgGaAloD0MIpnud1JeFAcCUhpRSlGgVSzJoFkdApHH4F/x2CHV9lChoBmgJaA9DCNzZVx6kBxXAlIaUUpRoFUsyaBZHQKRxurbxmTV1fZQoaAZoCWgPQwjBjClY40wBwJSGlFKUaBVLMmgWR0CkcX/nOjZddX2UKGgGaAloD0MIFTyFXKm3FcCUhpRSlGgVSzJoFkdApHMMZUDMeXV9lChoBmgJaA9DCHR8tDhjmBjAlIaUUpRoFUsyaBZHQKRy0G9pRGd1fZQoaAZoCWgPQwiXjjnP2JcBwJSGlFKUaBVLMmgWR0CkcpMo2GZedX2UKGgGaAloD0MIkSdJ10z+D8CUhpRSlGgVSzJoFkdApHJYaxX4kHV9lChoBmgJaA9DCEaZDTLJOBHAlIaUUpRoFUsyaBZHQKRz6+rU9ZB1fZQoaAZoCWgPQwhqpnud1BcMwJSGlFKUaBVLMmgWR0Ckc6/3evZAdX2UKGgGaAloD0MIKsk6HF21GsCUhpRSlGgVSzJoFkdApHNy2WpqAXV9lChoBmgJaA9DCIC4q1eREfy/lIaUUpRoFUsyaBZHQKRzOBwuM/B1fZQoaAZoCWgPQwiSIjKs4r0awJSGlFKUaBVLMmgWR0CkdMtVR1oydX2UKGgGaAloD0MIY5y/CYVoD8CUhpRSlGgVSzJoFkdApHSPWOIZZXV9lChoBmgJaA9DCHhgAOFDiQbAlIaUUpRoFUsyaBZHQKR0UfeUILR1fZQoaAZoCWgPQwhwJNBgUycKwJSGlFKUaBVLMmgWR0CkdBdmQKa5dX2UKGgGaAloD0MIMgBUceMWDcCUhpRSlGgVSzJoFkdApHXKS9ugpXV9lChoBmgJaA9DCCPXTSmvFQjAlIaUUpRoFUsyaBZHQKR1jk+5e7d1fZQoaAZoCWgPQwh1OpD11AoawJSGlFKUaBVLMmgWR0CkdVD15B1LdX2UKGgGaAloD0MIdJgvL8CeB8CUhpRSlGgVSzJoFkdApHUWJWNm2HV9lChoBmgJaA9DCOFDiZY8HgHAlIaUUpRoFUsyaBZHQKR2rxrBTGZ1fZQoaAZoCWgPQwgew2M/i6UIwJSGlFKUaBVLMmgWR0CkdnNOVPepdX2UKGgGaAloD0MIGysxz0rqEcCUhpRSlGgVSzJoFkdApHY2KKpDNXV9lChoBmgJaA9DCD5bBwd7sxLAlIaUUpRoFUsyaBZHQKR1+2MKkVN1fZQoaAZoCWgPQwgg66nVV7cNwJSGlFKUaBVLMmgWR0Ckd4pEYwZgdX2UKGgGaAloD0MI/U0oRMCBCcCUhpRSlGgVSzJoFkdApHdOW+oLonV9lChoBmgJaA9DCDTW/s726AjAlIaUUpRoFUsyaBZHQKR3EWYWtU51fZQoaAZoCWgPQwhE2zF1VyYTwJSGlFKUaBVLMmgWR0CkdtauGKyfdX2UKGgGaAloD0MIuhCrP8IwFcCUhpRSlGgVSzJoFkdApHh94u9OAXV9lChoBmgJaA9DCHnKarqe6A7AlIaUUpRoFUsyaBZHQKR4Qe+23KB1fZQoaAZoCWgPQwg49BYP71kXwJSGlFKUaBVLMmgWR0CkeASP+4smdX2UKGgGaAloD0MItRoS91h6FcCUhpRSlGgVSzJoFkdApHfJzNliB3V9lChoBmgJaA9DCClauReYlQbAlIaUUpRoFUsyaBZHQKR5W5WilBR1fZQoaAZoCWgPQwjNeFvptUkQwJSGlFKUaBVLMmgWR0CkeR/eLvTgdX2UKGgGaAloD0MIqyFxj6XPAsCUhpRSlGgVSzJoFkdApHjioKlYU3V9lChoBmgJaA9DCGeY2lIH6RLAlIaUUpRoFUsyaBZHQKR4qC7K7qZ1fZQoaAZoCWgPQwiSzVXzHCETwJSGlFKUaBVLMmgWR0CkekGhEjPfdX2UKGgGaAloD0MIMxgjEoW2BcCUhpRSlGgVSzJoFkdApHoFu1ndwnV9lChoBmgJaA9DCA6ki00rJQ3AlIaUUpRoFUsyaBZHQKR5yGucME11fZQoaAZoCWgPQwi1w1+TNWoEwJSGlFKUaBVLMmgWR0CkeY3H7xd6dX2UKGgGaAloD0MI7rWg98bgGsCUhpRSlGgVSzJoFkdApHsjXcxj8XV9lChoBmgJaA9DCJ8AipElMw3AlIaUUpRoFUsyaBZHQKR652aDwph1fZQoaAZoCWgPQwiNRdPZyXAVwJSGlFKUaBVLMmgWR0CkeqoT4+KTdX2UKGgGaAloD0MIwZFAg00tEsCUhpRSlGgVSzJoFkdApHpvWe6I33V9lChoBmgJaA9DCAIqHEEqpQHAlIaUUpRoFUsyaBZHQKR8CbSZ0CB1fZQoaAZoCWgPQwjxSScSTLUMwJSGlFKUaBVLMmgWR0Cke82+oLofdX2UKGgGaAloD0MI/reSHRuRFcCUhpRSlGgVSzJoFkdApHuQyIpH7XV9lChoBmgJaA9DCMR4zas6CwHAlIaUUpRoFUsyaBZHQKR7Vltj0+V1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fe5ec759ebcfc0454236b6272e4bf1e6d467f956627630ae7936dfab65d510f
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:244257bb2a8a3b8b862b189c5cccdb671435489339c3d869a09f7fb1a13dc14a
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7eff28c71700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7eff28c6d4e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674014882274703156, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAFU3SPm3BBD0hxRk/FU3SPm3BBD0hxRk/FU3SPm3BBD0hxRk/FU3SPm3BBD0hxRk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7pjEv0eKOb+9S8a+I5vjPUaxjr8eEcC9cW50Pj88A789auO9UVvgPuu/Yj5ZCEY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAVTdI+bcEEPSHFGT+a0xI8GhgjO2PRjDwVTdI+bcEEPSHFGT+a0xI8GhgjO2PRjDwVTdI+bcEEPSHFGT+a0xI8GhgjO2PRjDwVTdI+bcEEPSHFGT+a0xI8GhgjO2PRjDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41074434 0.03241103 0.6006642 ]\n [0.41074434 0.03241103 0.6006642 ]\n [0.41074434 0.03241103 0.6006642 ]\n [0.41074434 0.03241103 0.6006642 ]]", "desired_goal": "[[-1.535917 -0.7247662 -0.3872966 ]\n [ 0.11113574 -1.114785 -0.09378265]\n [ 0.23870255 -0.51263803 -0.11104248]\n [ 0.4381967 0.22143523 0.7735649 ]]", "observation": "[[0.41074434 0.03241103 0.6006642 0.00896158 0.00248862 0.01718969]\n [0.41074434 0.03241103 0.6006642 0.00896158 0.00248862 0.01718969]\n [0.41074434 0.03241103 0.6006642 0.00896158 0.00248862 0.01718969]\n [0.41074434 0.03241103 0.6006642 0.00896158 0.00248862 0.01718969]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANY7nvEjbpr3i9gY+BtGyvHRqTb3yypE+X7KcPZTZz70kPcg9h0EEvqtwlL18rlI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02826605 -0.08147293 0.13180116]\n [-0.02182819 -0.05015035 0.28475147]\n [ 0.07651209 -0.10148922 0.09777287]\n [-0.12915622 -0.07248052 0.05143593]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI46jcRC0N/b+UhpRSlIwBbJRLMowBdJRHQKRmfB0p3HJ1fZQoaAZoCWgPQwiy9KEL6psMwJSGlFKUaBVLMmgWR0CkZkFn7HhkdX2UKGgGaAloD0MI5C7CFOUyB8CUhpRSlGgVSzJoFkdApGYEIu5BknV9lChoBmgJaA9DCCC29GiqZxHAlIaUUpRoFUsyaBZHQKRlyXt0FKV1fZQoaAZoCWgPQwithsQ9lh4UwJSGlFKUaBVLMmgWR0CkZ3402tMgdX2UKGgGaAloD0MIzcth9x2DA8CUhpRSlGgVSzJoFkdApGdCVII4VHV9lChoBmgJaA9DCOBoxw2/WwbAlIaUUpRoFUsyaBZHQKRnBXAdn011fZQoaAZoCWgPQwjt0obD0sD7v5SGlFKUaBVLMmgWR0CkZsqveP7vdX2UKGgGaAloD0MIb9i2KLORFcCUhpRSlGgVSzJoFkdApGhejqOcUnV9lChoBmgJaA9DCCo6kst/KADAlIaUUpRoFUsyaBZHQKRoIqNIbwV1fZQoaAZoCWgPQwjHSPYINaMTwJSGlFKUaBVLMmgWR0CkZ+WicoYvdX2UKGgGaAloD0MIG2X9ZmI6EcCUhpRSlGgVSzJoFkdApGeq/TLGJnV9lChoBmgJaA9DCL4tWKoLGBrAlIaUUpRoFUsyaBZHQKRpPF+/gzh1fZQoaAZoCWgPQwi/C1uzlfcEwJSGlFKUaBVLMmgWR0CkaQBzNliCdX2UKGgGaAloD0MI5Nwm3Cvz9r+UhpRSlGgVSzJoFkdApGjDE74i5nV9lChoBmgJaA9DCEQzT64p0A7AlIaUUpRoFUsyaBZHQKRoiJO32El1fZQoaAZoCWgPQwjTo6mezH/2v5SGlFKUaBVLMmgWR0CkahPRRdhRdX2UKGgGaAloD0MI9SoyOiBpCsCUhpRSlGgVSzJoFkdApGnYbdadMHV9lChoBmgJaA9DCLXC9L2GQBvAlIaUUpRoFUsyaBZHQKRpm4x1xKh1fZQoaAZoCWgPQwjohTsXRhoCwJSGlFKUaBVLMmgWR0CkaWEXk5p8dX2UKGgGaAloD0MIVTNrKSB9GcCUhpRSlGgVSzJoFkdApGsHkWAPNHV9lChoBmgJaA9DCIy+gjRjEQvAlIaUUpRoFUsyaBZHQKRqy6QNkOJ1fZQoaAZoCWgPQwgZHCWvzuEQwJSGlFKUaBVLMmgWR0Ckao6CUX54dX2UKGgGaAloD0MI9aCgFK3MF8CUhpRSlGgVSzJoFkdApGpT1uivgXV9lChoBmgJaA9DCMfZdARwM/q/lIaUUpRoFUsyaBZHQKRr9qO938p1fZQoaAZoCWgPQwikjLgANKoFwJSGlFKUaBVLMmgWR0Cka7q2a2F4dX2UKGgGaAloD0MIB7MJMCz/CsCUhpRSlGgVSzJoFkdApGt9pblijXV9lChoBmgJaA9DCNCZtKm6BwjAlIaUUpRoFUsyaBZHQKRrQza9K291fZQoaAZoCWgPQwjwbI/ecN8RwJSGlFKUaBVLMmgWR0CkbN5TAFgVdX2UKGgGaAloD0MIveXqxyZZGsCUhpRSlGgVSzJoFkdApGyieRPoFHV9lChoBmgJaA9DCNP3GoLjMgLAlIaUUpRoFUsyaBZHQKRsZUQ04zd1fZQoaAZoCWgPQwgHtd/aiRIQwJSGlFKUaBVLMmgWR0CkbCrCFbmmdX2UKGgGaAloD0MIchdhinIpC8CUhpRSlGgVSzJoFkdApG3B/d69kHV9lChoBmgJaA9DCC4dc56xzwLAlIaUUpRoFUsyaBZHQKRthj1f3N91fZQoaAZoCWgPQwjh8e1dg/4AwJSGlFKUaBVLMmgWR0CkbUjsdDIBdX2UKGgGaAloD0MIY9UgzO3eEsCUhpRSlGgVSzJoFkdApG0ON3np0XV9lChoBmgJaA9DCE65wrtc5BfAlIaUUpRoFUsyaBZHQKRun6LwWnF1fZQoaAZoCWgPQwjYf52bNuMDwJSGlFKUaBVLMmgWR0CkbmQGnn+ydX2UKGgGaAloD0MIUwlP6PVnCcCUhpRSlGgVSzJoFkdApG4moNutOnV9lChoBmgJaA9DCCcuxysQnQrAlIaUUpRoFUsyaBZHQKRt6/X5FgF1fZQoaAZoCWgPQwjCoiJOJ3kdwJSGlFKUaBVLMmgWR0Ckb5+9i+cpdX2UKGgGaAloD0MIfJkoQuqmEsCUhpRSlGgVSzJoFkdApG9kiMYMv3V9lChoBmgJaA9DCDyHMlTFBBTAlIaUUpRoFUsyaBZHQKRvJ0ihWYF1fZQoaAZoCWgPQwjXaDnQQ+0JwJSGlFKUaBVLMmgWR0CkbuyCnP3SdX2UKGgGaAloD0MIMbJkjuW9AsCUhpRSlGgVSzJoFkdApHB00YTCcnV9lChoBmgJaA9DCMb5m1CIYBDAlIaUUpRoFUsyaBZHQKRwOOqebut1fZQoaAZoCWgPQwiQ3QVKCmwEwJSGlFKUaBVLMmgWR0Ckb/uNYKYzdX2UKGgGaAloD0MIVRLZB1n2DcCUhpRSlGgVSzJoFkdApG/A4CIUJ3V9lChoBmgJaA9DCCiAYmTJHADAlIaUUpRoFUsyaBZHQKRxXrBTGYN1fZQoaAZoCWgPQwindRvUfmsTwJSGlFKUaBVLMmgWR0CkcSLBj4HpdX2UKGgGaAloD0MIkfKTap9+E8CUhpRSlGgVSzJoFkdApHDlaIN3GHV9lChoBmgJaA9DCD8AqU2cHA3AlIaUUpRoFUsyaBZHQKRwqqlP8AJ1fZQoaAZoCWgPQwivfQG9cCcNwJSGlFKUaBVLMmgWR0CkcjQRoRI0dX2UKGgGaAloD0MIpnud1JeFAcCUhpRSlGgVSzJoFkdApHH4F/x2CHV9lChoBmgJaA9DCNzZVx6kBxXAlIaUUpRoFUsyaBZHQKRxurbxmTV1fZQoaAZoCWgPQwjBjClY40wBwJSGlFKUaBVLMmgWR0CkcX/nOjZddX2UKGgGaAloD0MIFTyFXKm3FcCUhpRSlGgVSzJoFkdApHMMZUDMeXV9lChoBmgJaA9DCHR8tDhjmBjAlIaUUpRoFUsyaBZHQKRy0G9pRGd1fZQoaAZoCWgPQwiXjjnP2JcBwJSGlFKUaBVLMmgWR0CkcpMo2GZedX2UKGgGaAloD0MIkSdJ10z+D8CUhpRSlGgVSzJoFkdApHJYaxX4kHV9lChoBmgJaA9DCEaZDTLJOBHAlIaUUpRoFUsyaBZHQKRz6+rU9ZB1fZQoaAZoCWgPQwhqpnud1BcMwJSGlFKUaBVLMmgWR0Ckc6/3evZAdX2UKGgGaAloD0MIKsk6HF21GsCUhpRSlGgVSzJoFkdApHNy2WpqAXV9lChoBmgJaA9DCIC4q1eREfy/lIaUUpRoFUsyaBZHQKRzOBwuM/B1fZQoaAZoCWgPQwiSIjKs4r0awJSGlFKUaBVLMmgWR0CkdMtVR1oydX2UKGgGaAloD0MIY5y/CYVoD8CUhpRSlGgVSzJoFkdApHSPWOIZZXV9lChoBmgJaA9DCHhgAOFDiQbAlIaUUpRoFUsyaBZHQKR0UfeUILR1fZQoaAZoCWgPQwhwJNBgUycKwJSGlFKUaBVLMmgWR0CkdBdmQKa5dX2UKGgGaAloD0MIMgBUceMWDcCUhpRSlGgVSzJoFkdApHXKS9ugpXV9lChoBmgJaA9DCCPXTSmvFQjAlIaUUpRoFUsyaBZHQKR1jk+5e7d1fZQoaAZoCWgPQwh1OpD11AoawJSGlFKUaBVLMmgWR0CkdVD15B1LdX2UKGgGaAloD0MIdJgvL8CeB8CUhpRSlGgVSzJoFkdApHUWJWNm2HV9lChoBmgJaA9DCOFDiZY8HgHAlIaUUpRoFUsyaBZHQKR2rxrBTGZ1fZQoaAZoCWgPQwgew2M/i6UIwJSGlFKUaBVLMmgWR0CkdnNOVPepdX2UKGgGaAloD0MIGysxz0rqEcCUhpRSlGgVSzJoFkdApHY2KKpDNXV9lChoBmgJaA9DCD5bBwd7sxLAlIaUUpRoFUsyaBZHQKR1+2MKkVN1fZQoaAZoCWgPQwgg66nVV7cNwJSGlFKUaBVLMmgWR0Ckd4pEYwZgdX2UKGgGaAloD0MI/U0oRMCBCcCUhpRSlGgVSzJoFkdApHdOW+oLonV9lChoBmgJaA9DCDTW/s726AjAlIaUUpRoFUsyaBZHQKR3EWYWtU51fZQoaAZoCWgPQwhE2zF1VyYTwJSGlFKUaBVLMmgWR0CkdtauGKyfdX2UKGgGaAloD0MIuhCrP8IwFcCUhpRSlGgVSzJoFkdApHh94u9OAXV9lChoBmgJaA9DCHnKarqe6A7AlIaUUpRoFUsyaBZHQKR4Qe+23KB1fZQoaAZoCWgPQwg49BYP71kXwJSGlFKUaBVLMmgWR0CkeASP+4smdX2UKGgGaAloD0MItRoS91h6FcCUhpRSlGgVSzJoFkdApHfJzNliB3V9lChoBmgJaA9DCClauReYlQbAlIaUUpRoFUsyaBZHQKR5W5WilBR1fZQoaAZoCWgPQwjNeFvptUkQwJSGlFKUaBVLMmgWR0CkeR/eLvTgdX2UKGgGaAloD0MIqyFxj6XPAsCUhpRSlGgVSzJoFkdApHjioKlYU3V9lChoBmgJaA9DCGeY2lIH6RLAlIaUUpRoFUsyaBZHQKR4qC7K7qZ1fZQoaAZoCWgPQwiSzVXzHCETwJSGlFKUaBVLMmgWR0CkekGhEjPfdX2UKGgGaAloD0MIMxgjEoW2BcCUhpRSlGgVSzJoFkdApHoFu1ndwnV9lChoBmgJaA9DCA6ki00rJQ3AlIaUUpRoFUsyaBZHQKR5yGucME11fZQoaAZoCWgPQwi1w1+TNWoEwJSGlFKUaBVLMmgWR0CkeY3H7xd6dX2UKGgGaAloD0MI7rWg98bgGsCUhpRSlGgVSzJoFkdApHsjXcxj8XV9lChoBmgJaA9DCJ8AipElMw3AlIaUUpRoFUsyaBZHQKR652aDwph1fZQoaAZoCWgPQwiNRdPZyXAVwJSGlFKUaBVLMmgWR0CkeqoT4+KTdX2UKGgGaAloD0MIwZFAg00tEsCUhpRSlGgVSzJoFkdApHpvWe6I33V9lChoBmgJaA9DCAIqHEEqpQHAlIaUUpRoFUsyaBZHQKR8CbSZ0CB1fZQoaAZoCWgPQwjxSScSTLUMwJSGlFKUaBVLMmgWR0Cke82+oLofdX2UKGgGaAloD0MI/reSHRuRFcCUhpRSlGgVSzJoFkdApHuQyIpH7XV9lChoBmgJaA9DCMR4zas6CwHAlIaUUpRoFUsyaBZHQKR7Vltj0+V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (730 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -4.639933246932924, "std_reward": 1.7794257530779998, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T04:51:48.195436"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77228ebd1f3a4653fad77d1929f0009da778f96faa0e16cd0b630fa819115a11
3
+ size 3212