--- license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: llama2-7b-sft-full-llama2 results: [] --- # llama2-7b-sft-full-llama2 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 1.0380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0183 | 0.9980 | 126 | 1.0127 | | 0.869 | 1.9960 | 252 | 1.0026 | | 0.714 | 2.9941 | 378 | 1.0380 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0a0+ebedce2 - Datasets 2.19.2 - Tokenizers 0.19.1