Update README.md
Browse files
README.md
CHANGED
@@ -7,31 +7,41 @@ language:
|
|
7 |
- en
|
8 |
---
|
9 |
|
10 |
-
This is a
|
11 |
-
Please read the instruction carefully before downloading the model.
|
12 |
|
13 |
Though Falcon is not specifically trained on Chinese corpus, it exhibits strong performance in Chinese Language Understanding in our experiment. We would like to explore out of curiosity whether a
|
14 |
-
small amount of Chinese instruction data can push it further and make it better at speaking.
|
15 |
|
16 |
-
The
|
17 |
-
The finetune model is not as good as the carefully continue-trained-and-finetuned LLaMA-models such as [OpenBuddy](https://huggingface.co/OpenBuddy) and [Ziya](https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1) in Chinese generation,
|
18 |
-
still it quickly adapts to the new langauge and generate superisingly good result. We call for more research on applying Falcon-40b to the Chinese domain.
|
19 |
|
20 |
-
|
|
|
|
|
21 |
|
22 |
-
|
|
|
|
|
23 |
|
24 |
-
|
|
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
| 40.4 | 30.1 | 35.8 | 47.6 | 42.0 | 40.6 |
|
31 |
|
|
|
|
|
|
|
32 |
|
33 |
-
Result on GaoKao subset of C-Eval with 0-shot
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
- en
|
8 |
---
|
9 |
|
10 |
+
This is a QLoRa adapter model to [Falcon-40b](https://huggingface.co/tiiuae/falcon-40b).
|
|
|
11 |
|
12 |
Though Falcon is not specifically trained on Chinese corpus, it exhibits strong performance in Chinese Language Understanding in our experiment. We would like to explore out of curiosity whether a
|
13 |
+
small amount of Chinese instruction data can push it further and make it better at speaking.The LoRa model is trained with the [QLoRa repo](https://github.com/artidoro/qlora) on a subset of bilingual instruction data from [Alpaca-CoT dataset](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT).
|
14 |
|
15 |
+
The result is suprisingly good considering the number of Chinese tokens it has ever seen, though it shows clear limitions. Please check the examples below.
|
|
|
|
|
16 |
|
17 |
+
```
|
18 |
+
Question: 序列1,4,9,16的后一个数是什么?
|
19 |
+
Answer: 序列1,4,9,16的后一个数是25。因为序列中的每个数字都是前一个数字加上一个递增的差值,第一个差值是3,第二个差值是5,第三个差值是7,第四个差值是9,所以最后一个数字应该是第四个数字16加上第四个差值9,即16+9=25。因此,序列1,4,9,16的后一个数是25。
|
20 |
|
21 |
+
Question: 已知全班所有同学的姓名存储于列表names中,所有同学的身高存储于列表heights中,它们的关系是一一对应的。请写一段Python代码,将所有同学的姓名按身高由低到高排序。
|
22 |
+
Answer: names = ['小明', '小红', '小张', '小李']
|
23 |
+
heights = [170, 165, 175, 180]
|
24 |
|
25 |
+
# 使用zip函数将姓名和身高对应起来,然后根据身高排序
|
26 |
+
sorted_names = sorted(names, key=lambda x: heights[names.index(x)])
|
27 |
|
28 |
+
# 输出排序后的姓名列表
|
29 |
+
print(sorted_names)
|
30 |
|
31 |
+
Question: 中国的“东北三省”指的是哪里?
|
32 |
+
Answer: 中国的东北三省指的是吉林省、黑龙江省和辽宁省。这些省份位于中国东北地区,北临俄罗斯和乌克兰,东临日本海。它们是中国最大的省份之一,占中国陆地面积的七分之一。东北三省以其自然风光、丰富的民族文化和历史遗产而闻名。它们是中国旅游业的重要目的地之一。您还有其他问题吗?
|
|
|
33 |
|
34 |
+
Question: “但愿人长久,千里共婵娟”,其中婵娟指的是什么? A、月亮 B、姻缘
|
35 |
+
Answer: 这道题目考察的是对于古诗词的理解和文化常识。这句话出自唐代诗人杜甫的《月夜》一诗,其中婵娟是指月亮。这句话的意思是希望人和月亮能够长久存在,共同见证世间美好的事物。婵娟是古代诗词中常用的一个词语,指的是月亮的光辉、美丽和媚态。因此,答案是A,月亮。
|
36 |
+
```
|
37 |
|
|
|
38 |
|
39 |
+
## Evalutions
|
40 |
+
|
41 |
+
We evaluate on [C-Eval](https://cevalbenchmark.com/). More results will be added later.
|
42 |
+
|
43 |
+
Result on C-Eval test set with 5-shot and no CoT, which is better than LLaMA-series models.
|
44 |
+
|
45 |
+
| Average | Avg(Hard) | STEM | Social Science | Humanities | Others |
|
46 |
+
| - | - | - | - | - | - |
|
47 |
+
| 42.0 | 32.4 | 38.5 | 50.3 | 42.5 | 40.5 |
|