{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cf563078ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cf563078f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cf563079000>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cf563079090>", "_build": "<function ActorCriticPolicy._build at 0x7cf563079120>", "forward": "<function ActorCriticPolicy.forward at 0x7cf5630791b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cf563079240>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cf5630792d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7cf563079360>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cf5630793f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cf563079480>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cf563079510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cf563820d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702049160677397127, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABq2Mr3SVtC7tcbEOze2Ez2H4hk9uPHyvQAAgD8AAIA/bVFfvpy3WbwTGhI+hicqPO0Evz3zqGi+AACAPwAAgD/NB+08DIIFPoN+Cz2nvJu+b2pvPBMkwTwAAAAAAAAAAADcrb28tY4/4oq+vu2IO7+CC7O9ClVevQAAAAAAAAAAGmAlviHJqj5PKR69Mk/Qvmou9b1rSZg9AAAAAAAAAABmC6Y99rxturiFFjVEEhuu5kWNOWg2ZbQAAIA/AACAPyZU7r1aVjA+xiLGPZRVnr5vAF48XKuivAAAAAAAAAAAALR1Pg5wEz8ARnc9U6cfv9bGED4qOgu9AAAAAAAAAAAAuB08zryFP8ps4zsboT6/SWMYPdaSbDwAAAAAAAAAAM2guTyShWU+AUIbvIn+cL7mU447z6K7uQAAAAAAAAAAwOllPuj5iD4bqWC+qYG0vrcLFjz5ZgO+AAAAAAAAAAAAwjG+QVaGvDpFEzoVl+o4ogr1PUeLg7kAAIA/AACAP8Bumj3XA1257TphOesgqTRQzyw7IJCFuAAAgD8AAAAA5p3PPTz3uT+IVAM/tLUPvuc5kz21+xA+AAAAAAAAAAAjgGW+7NXzPDVRV7hdICQ3fH6JvpbPojcAAIA/AACAP7MLXr2uFYm6/Vp7M8N4bK6PJhc5wvioswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAmDkMkQf+MAWyUS9eMAXSUR0CmjzY/Vy3kdX2UKGgGR0Byh75k9U0faAdL12gIR0CmjzztsvZidX2UKGgGR0Bw/ZPtUn5SaAdL1mgIR0Cmjz5v1lGxdX2UKGgGR0By3hOARTS9aAdL2WgIR0CmkH78m8dxdX2UKGgGR0By6khC+lCUaAdL9mgIR0CmkPnmaH9FdX2UKGgGR0Bwv3L7oB7vaAdL0mgIR0CmkVmlZX+3dX2UKGgGR0By3noicG1QaAdL9GgIR0CmkaedCmdidX2UKGgGR0BvkGXzDn/2aAdLxGgIR0CmklGIj4YadX2UKGgGR0Byd0e/5+H8aAdNBAFoCEdApr8X6uW8iHV9lChoBkdAciSzyBkI5mgHS91oCEdApr9QkmhM8HV9lChoBkdAb89z19ORDGgHS7toCEdApsDGfNA1N3V9lChoBkdAcOfBsyi22GgHS79oCEdApsFNUEPlMnV9lChoBkdAc8GOSntOVWgHS/poCEdApsF2KyfL93V9lChoBkdAcIppI+W4VmgHS7hoCEdApsGHEQ5FPXV9lChoBkdAcK3radtl7WgHS8BoCEdApsJ6qGUOeHV9lChoBkdAc4pYtxuKoGgHS8doCEdApsMJ+QU5/HV9lChoBkdAbJe1l5GBnWgHTUsDaAhHQKbDbqeK8+R1fZQoaAZHQHAuHI6r/85oB0uraAhHQKbEAcvugHx1fZQoaAZHQFz59jgAIY5oB03oA2gIR0CmxN907r9mdX2UKGgGR0Bt5XI8yN4raAdLxmgIR0CmxSMvZh8ZdX2UKGgGR0BwdTnwG4ZuaAdLy2gIR0CmxUeocaOxdX2UKGgGR0Bwtl2nsLOSaAdLvGgIR0Cmxd9Xko4NdX2UKGgGR0BjkWNkvsZ6aAdN6ANoCEdApsYqntOVPnV9lChoBkdAS0eqioKlYWgHS7xoCEdApsZmOZLIxXV9lChoBkdAcIzrqMWGh2gHS85oCEdApscH2VVxTHV9lChoBkdAcl5nSfDk2mgHS8loCEdApseDh3qzJXV9lChoBkdAcRvafzz3AWgHS71oCEdApsgmnl4keXV9lChoBkdAY6pkqc3ERGgHTegDaAhHQKbIPOVPepJ1fZQoaAZHQG4KMZP2wmpoB0u7aAhHQKbIgG9pRGd1fZQoaAZHQHO2FXmvGIdoB0vPaAhHQKbIsYc/+sJ1fZQoaAZHQGSH0hvBJqZoB03oA2gIR0CmyPwW3z+WdX2UKGgGR0BxGGhIvrWzaAdLxmgIR0CmyayRbKRudX2UKGgGR0BxYfpW3jMnaAdL2GgIR0Cmyb5Gax5cdX2UKGgGR0Bwv2erdWQwaAdLt2gIR0CmygwDNhVmdX2UKGgGR0Byjk6fapPzaAdLwmgIR0Cmy1E/KQq7dX2UKGgGR0Bk4uy1NQCTaAdN6ANoCEdApstbaPCEYnV9lChoBkdAcAoWD6Fds2gHS+RoCEdApsv8WhysCHV9lChoBkdAY7nt1IRRM2gHTegDaAhHQKbMnXA/LTx1fZQoaAZHQGBriUX531VoB03oA2gIR0CmzLjPOY6XdX2UKGgGR0BhUyW3Sa3JaAdN6ANoCEdAps0Tcj7hvXV9lChoBkdAcJQvjfek6GgHS7xoCEdAps1PmT1TSHV9lChoBkdAcOQKhcqvvGgHS+poCEdAps2l5KODJ3V9lChoBkdAcqCeVcD8tWgHTTgBaAhHQKbN3QpnYg91fZQoaAZHQHLUQTEit7toB0vIaAhHQKbOqW/JvHd1fZQoaAZHQHKMQRGtp25oB01iAWgIR0CmzsvcafjCdX2UKGgGR0BxaID1XeWOaAdL3mgIR0CmzvVh1DBudX2UKGgGR0Bu1WXeFcptaAdLsmgIR0Cmz2q5byH3dX2UKGgGR0BknL7hvR7aaAdN6ANoCEdAptAsMuvll3V9lChoBkdAcE/A2hqTKWgHS8NoCEdAptBC3/givHV9lChoBkdAcD7IC2c8T2gHS9VoCEdAptBLujRD1HV9lChoBkdAcCJMg2ZRbmgHS79oCEdAptCJP/JeV3V9lChoBkdAb8soP07KaGgHS8VoCEdAptDaGnGbTnV9lChoBkdAX/rPZ7HAAWgHTegDaAhHQKbSPf2K2rp1fZQoaAZHQEgDKU3XI2hoB0tuaAhHQKbSgUu+RHR1fZQoaAZHQG3HSXUpd8loB0vaaAhHQKbSlAY51eV1fZQoaAZHQHIXF6iTMaFoB0u9aAhHQKbSqY8dPtV1fZQoaAZHQHMAF67dzn1oB00BAWgIR0Cm0v1schkidX2UKGgGR0BvhQMrmQr+aAdLtGgIR0Cm04FXA/LUdX2UKGgGR0BwNBpWV/tqaAdLxGgIR0Cm1OWrn1WbdX2UKGgGR0BycaksSTQmaAdL2WgIR0Cm19NcOby6dX2UKGgGR0Bxzv8iwB5paAdNXAFoCEdAptf5sfq5b3V9lChoBkdAbekBq9GqgmgHS9poCEdAptgNtTDO1XV9lChoBkdAcOmnLJSzgWgHS9BoCEdAptgxZpztC3V9lChoBkdAYhxSFXaJymgHTegDaAhHQKbYY5OrQw91fZQoaAZHQHHMAUg0TDhoB0vtaAhHQKbYdBbfP5Z1fZQoaAZHQHM9VlPJq7BoB00bAWgIR0Cm2SN3np0PdX2UKGgGR0BxTwdGRV6vaAdL4mgIR0Cm2SivPkaNdX2UKGgGR0BxnJlVcUudaAdL32gIR0Cm2h7sniNsdX2UKGgGR0BnkJKvmozfaAdN6ANoCEdAptotaEBbOnV9lChoBkdAY7CHM2WIGmgHTegDaAhHQKbbL85S3sp1fZQoaAZHQHGXcmfGuLdoB0u3aAhHQKbbfch1Tzd1fZQoaAZHQHI38z2vjfhoB0vdaAhHQKbcFBsyi251fZQoaAZHQHJA/d69kBloB0vYaAhHQKbcOpsoDxN1fZQoaAZHQHCP2SMcZLtoB0uvaAhHQKbcPNGmUGF1fZQoaAZHQHEjFVPva11oB0vfaAhHQKbch0tAcDN1fZQoaAZHQHE+G03Ov+xoB0viaAhHQKbciokzGgl1fZQoaAZHQGFJIczZYgdoB03oA2gIR0Cm3KgyVObidX2UKGgGR0BwUFNGmUGFaAdNHQFoCEdApt1Q/PgNw3V9lChoBkdAcDxsNDtw72gHS8poCEdApt2+kgwGnnV9lChoBkdAcBdoPCl7+mgHS75oCEdApt6HLowEhnV9lChoBkdAcA0DneSB9WgHS7doCEdApt6tUEPlMnV9lChoBkdAYoa1WKdhAmgHTegDaAhHQKbe7R/EwWZ1fZQoaAZHQHI3TgQ6IWRoB00kAWgIR0Cm30P5xiobdX2UKGgGR0Bhm5WDHwPRaAdN6ANoCEdApt9z1f3N93V9lChoBkdAcMFjRUm2LGgHS8FoCEdApt/gjjaPCHV9lChoBkdAcUhQswtap2gHS+JoCEdApt/nmPo3aXV9lChoBkdAcXgx6OYIB2gHS+NoCEdApuBR2St/4XV9lChoBkdAcD6gBcRlH2gHS6poCEdApuCRm7J4jnV9lChoBkdAcysPHDJlrmgHTRoBaAhHQKbg90mMOwx1fZQoaAZHQHLJF2Rq46RoB00eAWgIR0Cm4U/fO2RadX2UKGgGR0Bg0pAbADaHaAdN6ANoCEdApuHCzC1qnHV9lChoBkdAcIyayKNyYGgHS8ZoCEdApuHVdu5z53V9lChoBkdAcN1aH9FWn2gHS8VoCEdApuHuf29L6HV9lChoBkdAbs86zVtoBmgHTRYBaAhHQKbh+QTVUdd1fZQoaAZHQG8Z/WlMyrRoB0u0aAhHQKbiWgrYoRZ1fZQoaAZHQHFisSoOx0NoB0vRaAhHQKbioAdXDFZ1fZQoaAZHQHG4sdxQzk9oB0voaAhHQKbiqh9srNJ1fZQoaAZHQGJQLBj4HopoB03oA2gIR0Cm4zbNbC79dX2UKGgGR0Bu4VOh0yP/aAdL5GgIR0Cm43umR/3GdX2UKGgGR0Bx7b95yEL6aAdLy2gIR0Cm437KRuCPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |