--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlmr-finetuned results: [] --- # xlmr-finetuned This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.1718 | 0.29 | 500 | 2.5733 | | 2.8822 | 0.59 | 1000 | 2.3739 | | 2.7361 | 0.88 | 1500 | 2.3563 | | 2.6077 | 1.18 | 2000 | 2.2466 | | 2.4731 | 1.47 | 2500 | 2.2027 | | 2.4545 | 1.76 | 3000 | 2.2104 | | 2.467 | 2.06 | 3500 | 2.0885 | | 2.3209 | 2.35 | 4000 | 2.0476 | | 2.2937 | 2.64 | 4500 | 1.9431 | | 2.2624 | 2.94 | 5000 | 1.9157 | | 2.1502 | 3.23 | 5500 | 1.8811 | | 2.1445 | 3.53 | 6000 | 1.8488 | | 2.1308 | 3.82 | 6500 | 1.8074 | | 2.0752 | 4.11 | 7000 | 1.8089 | | 2.032 | 4.41 | 7500 | 1.7853 | | 2.0253 | 4.7 | 8000 | 1.7723 | | 1.9904 | 4.99 | 8500 | 1.6976 | | 1.9348 | 5.29 | 9000 | 1.6399 | | 1.9116 | 5.58 | 9500 | 1.6159 | | 1.9105 | 5.88 | 10000 | 1.5930 | | 1.8649 | 6.17 | 10500 | 1.5590 | | 1.8108 | 6.46 | 11000 | 1.5662 | | 1.8084 | 6.76 | 11500 | 1.5504 | | 1.7835 | 7.05 | 12000 | 1.5933 | | 1.7324 | 7.34 | 12500 | 1.5500 | | 1.7358 | 7.64 | 13000 | 1.4570 | | 1.726 | 7.93 | 13500 | 1.4775 | | 1.6477 | 8.23 | 14000 | 1.4382 | | 1.6768 | 8.52 | 14500 | 1.4717 | | 1.6073 | 8.81 | 15000 | 1.4162 | | 1.6516 | 9.11 | 15500 | 1.4516 | | 1.6084 | 9.4 | 16000 | 1.4209 | | 1.6013 | 9.69 | 16500 | 1.3874 | | 1.608 | 9.99 | 17000 | 1.3897 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.16.1 - Tokenizers 0.15.0