--- tags: - merge - mergekit - lazymergekit - jdqwoi/TooManyMixRolePlay-7B-Story_V2 - jdqwoi/TooManyMixRolePlay-7B-Story_V3 base_model: - jdqwoi/TooManyMixRolePlay-7B-Story_V2 - jdqwoi/TooManyMixRolePlay-7B-Story_V3 --- # EXL2 quants of [jdqwoi/TooManyMixRolePlay-7B-Story_V3.5](https://huggingface.co/jdqwoi/TooManyMixRolePlay-7B-Story_V3.5) [6.00 bits per weight](https://huggingface.co/kim512/TooManyMixRolePlay-7B-Story_V3.5-6.0bpw-h6-exl2) [8.00 bits per weight](https://huggingface.co/kim512/TooManyMixRolePlay-7B-Story_V3.5-8.0bpw-h8-exl2) Created using the defaults from exllamav2 0.1.3 convert.py 6.0bpw head bits = 6 8.0bpw head bits = 8 length = 8192 dataset rows = 200 measurement rows = 32 measurement length = 8192 # TooManyMixRolePlay-7B-Story_V3.5 TooManyMixRolePlay-7B-Story_V3.5 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [jdqwoi/TooManyMixRolePlay-7B-Story_V2](https://huggingface.co/jdqwoi/TooManyMixRolePlay-7B-Story_V2) * [jdqwoi/TooManyMixRolePlay-7B-Story_V3](https://huggingface.co/jdqwoi/TooManyMixRolePlay-7B-Story_V3) ## 🧩 Configuration ```yaml slices: - sources: - model: jdqwoi/TooManyMixRolePlay-7B-Story_V2 layer_range: [0, 32] - model: jdqwoi/TooManyMixRolePlay-7B-Story_V3 layer_range: [0, 32] merge_method: slerp base_model: jdqwoi/TooManyMixRolePlay-7B-Story_V2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "jdqwoi/TooManyMixRolePlay-7B-Story_V3.5" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```