File size: 1,949 Bytes
873a17c 4505ee4 873a17c 4505ee4 873a17c ed37d85 4505ee4 b8353a4 4505ee4 873a17c 7c41b61 873a17c 4505ee4 7c41b61 873a17c 4505ee4 ed7e4ac 4505ee4 873a17c 4505ee4 873a17c 4505ee4 873a17c 4505ee4 873a17c d49441f 873a17c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-60-urdu
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-60-urdu
This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-urdu-urm-60](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-urdu-urm-60) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 8.8609
- Wer: 0.5948
- Cer: 0.3176
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 24.6193 | 4.17 | 50 | 8.8884 | 1.4349 | 0.6538 |
| 4.0847 | 8.33 | 100 | 8.9820 | 0.8175 | 0.4775 |
| 2.7909 | 12.5 | 150 | 10.4491 | 0.6559 | 0.4129 |
| 1.8326 | 16.67 | 200 | 8.7698 | 0.6105 | 0.3530 |
| 1.2727 | 20.83 | 250 | 8.7352 | 0.6061 | 0.3302 |
| 1.0649 | 25.0 | 300 | 8.7588 | 0.6079 | 0.3240 |
| 1.0751 | 29.17 | 350 | 8.8609 | 0.5948 | 0.3176 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|