File size: 1,949 Bytes
873a17c
 
4505ee4
873a17c
4505ee4
873a17c
ed37d85
4505ee4
b8353a4
4505ee4
 
 
 
 
873a17c
7c41b61
873a17c
4505ee4
 
 
7c41b61
 
873a17c
4505ee4
 
 
ed7e4ac
4505ee4
 
 
 
 
 
 
873a17c
 
 
 
4505ee4
873a17c
 
 
 
 
 
 
4505ee4
 
873a17c
 
 
 
4505ee4
 
 
 
 
 
 
 
 
873a17c
 
 
 
d49441f
873a17c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-60-urdu
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-60-urdu

This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-urdu-urm-60](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-urdu-urm-60) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 8.8609
- Wer: 0.5948
- Cer: 0.3176

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 24.6193       | 4.17  | 50   | 8.8884          | 1.4349 | 0.6538 |
| 4.0847        | 8.33  | 100  | 8.9820          | 0.8175 | 0.4775 |
| 2.7909        | 12.5  | 150  | 10.4491         | 0.6559 | 0.4129 |
| 1.8326        | 16.67 | 200  | 8.7698          | 0.6105 | 0.3530 |
| 1.2727        | 20.83 | 250  | 8.7352          | 0.6061 | 0.3302 |
| 1.0649        | 25.0  | 300  | 8.7588          | 0.6079 | 0.3240 |
| 1.0751        | 29.17 | 350  | 8.8609          | 0.5948 | 0.3176 |


### Framework versions

- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3