File size: 3,303 Bytes
3650a61 ab77a3c 8ca2db9 3650a61 87ff56f ab77a3c 8ca2db9 3650a61 8ca2db9 c27f673 3650a61 8ca2db9 ab77a3c 8ca2db9 c27f673 8ca2db9 ab77a3c c27f673 ab77a3c c27f673 8ca2db9 3650a61 87ff56f 8ca2db9 87ff56f 8ca2db9 87ff56f 8ca2db9 87ff56f 8ca2db9 d036b29 476225f 8ca2db9 d036b29 8ca2db9 3650a61 87ff56f 3650a61 87ff56f 3650a61 87ff56f 3650a61 87ff56f 3650a61 8ca2db9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
---
language:
- ur
license: apache-2.0
tags:
- generated_from_trainer
- hf-asr-leaderboard
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
base_model: facebook/wav2vec2-xls-r-300m
model-index:
- name: wav2vec2-large-xls-r-300m-Urdu
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: ur
metrics:
- type: wer
value: 39.89
name: Test WER
- type: cer
value: 16.7
name: Test CER
---
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-Urdu
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9889
- Wer: 0.5607
- Cer: 0.2370
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-300m-Urdu --dataset mozilla-foundation/common_voice_8_0 --config ur --split test
```
### Inference With LM
```python
from datasets import load_dataset, Audio
from transformers import pipeline
model = "kingabzpro/wav2vec2-large-xls-r-300m-Urdu"
data = load_dataset("mozilla-foundation/common_voice_8_0",
"ur",
split="test",
streaming=True,
use_auth_token=True)
sample_iter = iter(data.cast_column("path",
Audio(sampling_rate=16_000)))
sample = next(sample_iter)
asr = pipeline("automatic-speech-recognition", model=model)
prediction = asr(sample["path"]["array"],
chunk_length_s=5,
stride_length_s=1)
prediction
# => {'text': 'اب یہ ونگین لمحاتانکھار دلمیں میںفوث کریلیا اجائ'}
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| 3.6398 | 30.77 | 400 | 3.3517 | 1.0 | 1.0 |
| 2.9225 | 61.54 | 800 | 2.5123 | 1.0 | 0.8310 |
| 1.2568 | 92.31 | 1200 | 0.9699 | 0.6273 | 0.2575 |
| 0.8974 | 123.08 | 1600 | 0.9715 | 0.5888 | 0.2457 |
| 0.7151 | 153.85 | 2000 | 0.9984 | 0.5588 | 0.2353 |
| 0.6416 | 184.62 | 2400 | 0.9889 | 0.5607 | 0.2370 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
### Eval results on Common Voice 8 "test" (WER):
| Without LM | With LM (run `./eval.py`) |
|---|---|
| 52.03 | 39.89 |
|