--- language: - ar license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer - cer model-index: - name: wav2vec2-xls-r-300m-arabic results: - task: type: automatic-speech-recognition # Required. Example: automatic-speech-recognition name: Speech Recognition # Optional. Example: Speech Recognition dataset: type: mozilla-foundation/common_voice_7_0 # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: Common Voice ar # Required. Example: Common Voice zh-CN args: ar # Optional. Example: zh-CN metrics: - type: wer # Required. Example: wer value: 31.05 # Required. Example: 20.90 name: Test WER # Optional. Example: Test WER args: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order - type: cer # Required. Example: wer value: 8.78 # Required. Example: 20.90 name: Test CER # Optional. Example: Test WER args: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP # Optional. Example for BLEU: max_order --- # wav2vec2-large-xlsr-300-arabic This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3384 - Wer: 0.3105 - Cer: 0.0879 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.7383 | 1.8 | 500 | 0.4292 | 0.4065 | 0.1189 | | 0.664 | 3.6 | 1000 | 0.4245 | 0.3978 | 0.1175 | | 0.6064 | 5.4 | 1500 | 0.3854 | 0.3625 | 0.1048 | | 0.5221 | 7.19 | 2000 | 0.3819 | 0.3400 | 0.0976 | | 0.4591 | 8.99 | 2500 | 0.3384 | 0.3105 | 0.0879 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0