Commit
·
32a82f8
1
Parent(s):
1ca078d
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-large-xlsr-53-punjabi
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-large-xlsr-53-punjabi
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [manandey/wav2vec2-large-xlsr-punjabi](https://huggingface.co/manandey/wav2vec2-large-xlsr-punjabi) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.6752
|
20 |
+
- Wer: 0.3942
|
21 |
+
- Cer: 0.1299
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0003
|
41 |
+
- train_batch_size: 16
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 2
|
45 |
+
- total_train_batch_size: 32
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_steps: 200
|
49 |
+
- num_epochs: 30
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
|
56 |
+
| 0.8899 | 4.16 | 100 | 0.5338 | 0.4233 | 0.1394 |
|
57 |
+
| 0.3652 | 8.33 | 200 | 0.5759 | 0.4192 | 0.1349 |
|
58 |
+
| 0.248 | 12.49 | 300 | 0.6309 | 0.4102 | 0.1327 |
|
59 |
+
| 0.1898 | 16.65 | 400 | 0.6441 | 0.4007 | 0.1351 |
|
60 |
+
| 0.1486 | 20.82 | 500 | 0.6790 | 0.4044 | 0.1393 |
|
61 |
+
| 0.1245 | 24.98 | 600 | 0.6869 | 0.3987 | 0.1309 |
|
62 |
+
| 0.1085 | 29.16 | 700 | 0.6752 | 0.3942 | 0.1299 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.15.0
|
68 |
+
- Pytorch 1.10.0+cu111
|
69 |
+
- Datasets 1.17.0
|
70 |
+
- Tokenizers 0.10.3
|