File size: 2,494 Bytes
382682d
 
 
a0434ce
 
1b3794d
a0434ce
 
 
 
 
44d2e39
382682d
 
a0434ce
44d2e39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40f9501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44d2e39
40f9501
44d2e39
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
language: 
- sk
tags:
- twitter
- sentiment-analysis
license: cc
metrics:
- f1
widget:
- text: "Najkrajšia vianočná reklama: Toto milé video vám vykúzli čarovnú atmosféru: Vianoce sa nezadržateľne blížia."
- text: "A opäť sa objavili nebezpečné výrobky. Pozrite sa, či ich nemáte doma"
---


# Sentiment Analysis model based on SlovakBERT

This is a sentiment analysis classifier based on [SlovakBERT](https://huggingface.co/gerulata/slovakbert). The model can distinguish three level of sentiment:

- `-1` - Negative sentiment
- `0` - Neutral sentiment
- `1` - Positive setiment

The model was fine-tuned using Slovak part of [Multilingual Twitter Sentiment Analysis Dataset](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155036) [Mozetič et al 2016] containing 50k manually annotated Slovak tweets. As such, it is fine-tuned for tweets and it is not advised to use the model for general-purpose sentiment analysis.

## Results

The model was evaluated in [our paper](https://arxiv.org/abs/2109.15254) [Pikuliak et al 2021, Section 4.4]. It achieves \\(0.67\\) F1-score on the original dataset and \\(0.58\\) F1-score on general reviews dataset.

## Cite

```
@inproceedings{pikuliak-etal-2022-slovakbert,
    title = "{S}lovak{BERT}: {S}lovak Masked Language Model",
    author = "Pikuliak, Mat{\'u}{\v{s}}  and
      Grivalsk{\'y}, {\v{S}}tefan  and
      Kon{\^o}pka, Martin  and
      Bl{\v{s}}t{\'a}k, Miroslav  and
      Tamajka, Martin  and
      Bachrat{\'y}, Viktor  and
      Simko, Marian  and
      Bal{\'a}{\v{z}}ik, Pavol  and
      Trnka, Michal  and
      Uhl{\'a}rik, Filip",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, United Arab Emirates",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.findings-emnlp.530",
    pages = "7156--7168",
    abstract = "We introduce a new Slovak masked language model called \textit{SlovakBERT}. This is to our best knowledge the first paper discussing Slovak transformers-based language models. We evaluate our model on several NLP tasks and achieve state-of-the-art results. This evaluation is likewise the first attempt to establish a benchmark for Slovak language models. We publish the masked language model, as well as the fine-tuned models for part-of-speech tagging, sentiment analysis and semantic textual similarity.",
}

```