File size: 2,494 Bytes
382682d a0434ce 1b3794d a0434ce 44d2e39 382682d a0434ce 44d2e39 40f9501 44d2e39 40f9501 44d2e39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
language:
- sk
tags:
- twitter
- sentiment-analysis
license: cc
metrics:
- f1
widget:
- text: "Najkrajšia vianočná reklama: Toto milé video vám vykúzli čarovnú atmosféru: Vianoce sa nezadržateľne blížia."
- text: "A opäť sa objavili nebezpečné výrobky. Pozrite sa, či ich nemáte doma"
---
# Sentiment Analysis model based on SlovakBERT
This is a sentiment analysis classifier based on [SlovakBERT](https://huggingface.co/gerulata/slovakbert). The model can distinguish three level of sentiment:
- `-1` - Negative sentiment
- `0` - Neutral sentiment
- `1` - Positive setiment
The model was fine-tuned using Slovak part of [Multilingual Twitter Sentiment Analysis Dataset](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155036) [Mozetič et al 2016] containing 50k manually annotated Slovak tweets. As such, it is fine-tuned for tweets and it is not advised to use the model for general-purpose sentiment analysis.
## Results
The model was evaluated in [our paper](https://arxiv.org/abs/2109.15254) [Pikuliak et al 2021, Section 4.4]. It achieves \\(0.67\\) F1-score on the original dataset and \\(0.58\\) F1-score on general reviews dataset.
## Cite
```
@inproceedings{pikuliak-etal-2022-slovakbert,
title = "{S}lovak{BERT}: {S}lovak Masked Language Model",
author = "Pikuliak, Mat{\'u}{\v{s}} and
Grivalsk{\'y}, {\v{S}}tefan and
Kon{\^o}pka, Martin and
Bl{\v{s}}t{\'a}k, Miroslav and
Tamajka, Martin and
Bachrat{\'y}, Viktor and
Simko, Marian and
Bal{\'a}{\v{z}}ik, Pavol and
Trnka, Michal and
Uhl{\'a}rik, Filip",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-emnlp.530",
pages = "7156--7168",
abstract = "We introduce a new Slovak masked language model called \textit{SlovakBERT}. This is to our best knowledge the first paper discussing Slovak transformers-based language models. We evaluate our model on several NLP tasks and achieve state-of-the-art results. This evaluation is likewise the first attempt to establish a benchmark for Slovak language models. We publish the masked language model, as well as the fine-tuned models for part-of-speech tagging, sentiment analysis and semantic textual similarity.",
}
``` |