File size: 2,135 Bytes
0632ee2 88729f4 0632ee2 88729f4 d757413 ec79404 d757413 0632ee2 88729f4 0632ee2 88729f4 0632ee2 88729f4 55da8a5 88729f4 0632ee2 88729f4 0632ee2 88729f4 0632ee2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
language:
- sk
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
license: cc
datasets:
- glue
metrics:
- spearmanr
widget:
source_sentence: "Izrael uskutočnil letecké údery v blízkosti Damasku."
sentences:
- "Izrael uskutočnil vzdušný útok na Sýriu."
- "Pes leží na gauči a má hlavu na bielom vankúši."
---
# Sentence similarity model based on SlovakBERT
This is a sentence similarity model based on [SlovakBERT](https://huggingface.co/gerulata/slovakbert). The model was fine-tuned using [STSbenchmark](ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark) [Cer et al 2017] translated to Slovak using [M2M100](https://huggingface.co/facebook/m2m100_1.2B). The model can be used as an universal sentence encoder for Slovak sentences.
## Results
The model was evaluated in [our paper](https://arxiv.org/abs/2109.15254) [Pikuliak et al 2021, Section 4.3]. It achieves \\(0.791\\) Spearman correlation on STSbenchmark test set.
## Usage
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('kinit/slovakbert-sts-stsb')
embeddings = model.encode(sentences)
print(embeddings)
```
## Cite
```
@article{DBLP:journals/corr/abs-2109-15254,
author = {Mat{\'{u}}s Pikuliak and
Stefan Grivalsky and
Martin Konopka and
Miroslav Blst{\'{a}}k and
Martin Tamajka and
Viktor Bachrat{\'{y}} and
Mari{\'{a}}n Simko and
Pavol Bal{\'{a}}zik and
Michal Trnka and
Filip Uhl{\'{a}}rik},
title = {SlovakBERT: Slovak Masked Language Model},
journal = {CoRR},
volume = {abs/2109.15254},
year = {2021},
url = {https://arxiv.org/abs/2109.15254},
eprinttype = {arXiv},
eprint = {2109.15254},
}
```
|