--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: HW_DL_10_Competitions_v2 results: [] --- # HW_DL_10_Competitions_v2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8879 - F1: 0.6233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0635 | 1.0 | 563 | 0.9928 | 0.5588 | | 0.8676 | 2.0 | 1126 | 0.9153 | 0.6085 | | 0.7652 | 3.0 | 1689 | 0.8879 | 0.6233 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.21.0