Ihor commited on
Commit
2f89ddd
·
verified ·
1 Parent(s): 25be247

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -0
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ pipeline_tag: text2text-generation
6
+ ---
7
+
8
+ **flan-t5-small-for-classification**
9
+
10
+ <img src="https://github.com/Knowledgator/unlimited_classifier/raw/main/images/tree.jpeg" style="display: block; margin: auto;" height="720" width="720">
11
+
12
+ This is an additional fine-tuned [flan-t5-base](https://huggingface.co/google/flan-t5-base) model on many classification datasets.
13
+
14
+ The model supports prompt-tuned classification and is suitable for complex classification settings such as resumes classification by criteria.
15
+
16
+ You can use the model simply generating the text class name or using our [unlimited-classifier](https://github.com/Knowledgator/unlimited_classifier).
17
+
18
+ The library allows to set constraints on generation and classify text into millions of classes.
19
+
20
+ ### How to use:
21
+
22
+ To use it with transformers library take a look into the following code snippet:
23
+ ```python
24
+ # pip install accelerate
25
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
26
+
27
+ tokenizer = T5Tokenizer.from_pretrained("knowledgator/flan-t5-base-for-classification")
28
+ model = T5ForConditionalGeneration.from_pretrained("knowledgator/flan-t5-base-for-classification", device_map="auto")
29
+
30
+ input_text = "Define sentiment of the following text: I love to travel and someday I will see the world."
31
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
32
+
33
+ outputs = model.generate(input_ids)
34
+ print(tokenizer.decode(outputs[0]))
35
+ ```
36
+
37
+ **Using unlimited-classifier**
38
+
39
+ ```python
40
+ # pip install unlimited-classifier
41
+
42
+ from unlimited_classifier import TextClassifier
43
+
44
+ classifier = TextClassifier(
45
+ labels=[
46
+ 'positive',
47
+ 'negative',
48
+ 'neutral'
49
+ ],
50
+ model='knowledgator/flan-t5-base-for-classification',
51
+ tokenizer='knowledgator/flan-t5-base-for-classification',
52
+ )
53
+ output = classifier.invoke(input_text)
54
+ print(output)
55
+ ```