Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text2text-generation
|
6 |
+
---
|
7 |
+
|
8 |
+
**flan-t5-small-for-classification**
|
9 |
+
|
10 |
+
<img src="https://github.com/Knowledgator/unlimited_classifier/raw/main/images/tree.jpeg" style="display: block; margin: auto;" height="720" width="720">
|
11 |
+
|
12 |
+
This is an additional fine-tuned [flan-t5-base](https://huggingface.co/google/flan-t5-base) model on many classification datasets.
|
13 |
+
|
14 |
+
The model supports prompt-tuned classification and is suitable for complex classification settings such as resumes classification by criteria.
|
15 |
+
|
16 |
+
You can use the model simply generating the text class name or using our [unlimited-classifier](https://github.com/Knowledgator/unlimited_classifier).
|
17 |
+
|
18 |
+
The library allows to set constraints on generation and classify text into millions of classes.
|
19 |
+
|
20 |
+
### How to use:
|
21 |
+
|
22 |
+
To use it with transformers library take a look into the following code snippet:
|
23 |
+
```python
|
24 |
+
# pip install accelerate
|
25 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
26 |
+
|
27 |
+
tokenizer = T5Tokenizer.from_pretrained("knowledgator/flan-t5-base-for-classification")
|
28 |
+
model = T5ForConditionalGeneration.from_pretrained("knowledgator/flan-t5-base-for-classification", device_map="auto")
|
29 |
+
|
30 |
+
input_text = "Define sentiment of the following text: I love to travel and someday I will see the world."
|
31 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
32 |
+
|
33 |
+
outputs = model.generate(input_ids)
|
34 |
+
print(tokenizer.decode(outputs[0]))
|
35 |
+
```
|
36 |
+
|
37 |
+
**Using unlimited-classifier**
|
38 |
+
|
39 |
+
```python
|
40 |
+
# pip install unlimited-classifier
|
41 |
+
|
42 |
+
from unlimited_classifier import TextClassifier
|
43 |
+
|
44 |
+
classifier = TextClassifier(
|
45 |
+
labels=[
|
46 |
+
'positive',
|
47 |
+
'negative',
|
48 |
+
'neutral'
|
49 |
+
],
|
50 |
+
model='knowledgator/flan-t5-base-for-classification',
|
51 |
+
tokenizer='knowledgator/flan-t5-base-for-classification',
|
52 |
+
)
|
53 |
+
output = classifier.invoke(input_text)
|
54 |
+
print(output)
|
55 |
+
```
|