File size: 6,529 Bytes
fe5a394
 
24b8371
 
 
 
 
 
 
fe5a394
24b8371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: output
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# output

This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1885
- Rouge1: 65.4762
- Rouge2: 0.0
- Rougel: 65.4762
- Rougelsum: 65.4762
- Gen Len: 2.1905

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 1.2679        | 1.0   | 42   | 1.3033          | 48.8095 | 0.0    | 48.8095 | 48.8095   | 4.0119  |
| 1.0917        | 2.0   | 84   | 1.1075          | 48.8095 | 0.0    | 48.8095 | 48.8095   | 2.2738  |
| 0.8305        | 3.0   | 126  | 1.0366          | 45.2381 | 0.0    | 45.2381 | 45.2381   | 2.3095  |
| 0.6058        | 4.0   | 168  | 0.9865          | 48.8095 | 0.0    | 48.8095 | 48.8095   | 2.4524  |
| 0.5114        | 5.0   | 210  | 0.9289          | 55.9524 | 0.0    | 55.9524 | 55.9524   | 2.4048  |
| 0.6026        | 6.0   | 252  | 0.9373          | 53.5714 | 0.0    | 53.5714 | 53.5714   | 2.3214  |
| 0.6428        | 7.0   | 294  | 0.8762          | 53.5714 | 0.0    | 53.5714 | 53.5714   | 2.3095  |
| 0.5375        | 8.0   | 336  | 0.8908          | 54.7619 | 0.0    | 54.7619 | 54.7619   | 2.3333  |
| 0.4296        | 9.0   | 378  | 0.9172          | 50.0    | 0.0    | 50.0    | 50.0      | 2.3452  |
| 0.4644        | 10.0  | 420  | 0.8882          | 60.7143 | 0.0    | 60.7143 | 60.7143   | 2.3452  |
| 0.42          | 11.0  | 462  | 0.8917          | 54.7619 | 0.0    | 54.7619 | 54.7619   | 2.2619  |
| 0.3727        | 12.0  | 504  | 0.8710          | 55.9524 | 0.0    | 55.9524 | 55.9524   | 2.3571  |
| 0.4061        | 13.0  | 546  | 0.8817          | 54.7619 | 0.0    | 54.7619 | 54.7619   | 2.2857  |
| 0.3221        | 14.0  | 588  | 0.9284          | 57.1429 | 0.0    | 57.1429 | 57.1429   | 2.2857  |
| 0.3676        | 15.0  | 630  | 0.9313          | 57.1429 | 0.0    | 57.1429 | 57.1429   | 2.0476  |
| 0.264         | 16.0  | 672  | 0.9315          | 59.5238 | 0.0    | 59.5238 | 59.5238   | 2.0595  |
| 0.2933        | 17.0  | 714  | 0.9265          | 64.2857 | 0.0    | 64.2857 | 64.2857   | 2.1310  |
| 0.2446        | 18.0  | 756  | 0.9254          | 61.9048 | 0.0    | 61.9048 | 61.9048   | 2.0714  |
| 0.2356        | 19.0  | 798  | 0.9390          | 63.0952 | 0.0    | 63.0952 | 63.0952   | 2.0714  |
| 0.3102        | 20.0  | 840  | 0.9837          | 61.9048 | 0.0    | 61.9048 | 61.9048   | 2.1071  |
| 0.1539        | 21.0  | 882  | 0.9727          | 60.7143 | 0.0    | 60.7143 | 60.7143   | 2.0952  |
| 0.1674        | 22.0  | 924  | 1.0114          | 61.9048 | 0.0    | 61.9048 | 61.9048   | 2.0952  |
| 0.1831        | 23.0  | 966  | 0.9869          | 61.9048 | 0.0    | 61.9048 | 61.9048   | 2.0595  |
| 0.201         | 24.0  | 1008 | 0.9904          | 60.7143 | 0.0    | 60.7143 | 60.7143   | 2.0595  |
| 0.1602        | 25.0  | 1050 | 0.9883          | 60.7143 | 0.0    | 60.7143 | 60.7143   | 2.0595  |
| 0.158         | 26.0  | 1092 | 1.0057          | 63.0952 | 0.0    | 63.0952 | 63.0952   | 2.1071  |
| 0.1468        | 27.0  | 1134 | 0.9998          | 67.8571 | 0.0    | 67.8571 | 67.8571   | 2.1429  |
| 0.109         | 28.0  | 1176 | 1.0052          | 63.0952 | 0.0    | 63.0952 | 63.0952   | 2.3333  |
| 0.1397        | 29.0  | 1218 | 1.0137          | 65.4762 | 0.0    | 65.4762 | 65.4762   | 2.3333  |
| 0.1204        | 30.0  | 1260 | 1.0482          | 63.0952 | 0.0    | 63.0952 | 63.0952   | 2.3452  |
| 0.1577        | 31.0  | 1302 | 1.0787          | 66.6667 | 0.0    | 66.6667 | 66.6667   | 2.3452  |
| 0.1112        | 32.0  | 1344 | 1.0513          | 63.0952 | 0.0    | 63.0952 | 63.0952   | 2.3452  |
| 0.0932        | 33.0  | 1386 | 1.0786          | 63.0952 | 0.0    | 63.0952 | 63.0952   | 2.3452  |
| 0.0989        | 34.0  | 1428 | 1.1378          | 63.0952 | 0.0    | 63.0952 | 63.0952   | 2.3452  |
| 0.0858        | 35.0  | 1470 | 1.1055          | 65.4762 | 0.0    | 65.4762 | 65.4762   | 2.3452  |
| 0.1056        | 36.0  | 1512 | 1.1297          | 64.2857 | 0.0    | 64.2857 | 64.2857   | 2.3571  |
| 0.14          | 37.0  | 1554 | 1.1604          | 64.2857 | 0.0    | 64.2857 | 64.2857   | 2.3452  |
| 0.0592        | 38.0  | 1596 | 1.1213          | 65.4762 | 0.0    | 65.4762 | 65.4762   | 2.3452  |
| 0.1121        | 39.0  | 1638 | 1.1489          | 65.4762 | 0.0    | 65.4762 | 65.4762   | 2.3452  |
| 0.1917        | 40.0  | 1680 | 1.1544          | 64.2857 | 0.0    | 64.2857 | 64.2857   | 2.3452  |
| 0.1178        | 41.0  | 1722 | 1.1561          | 64.2857 | 0.0    | 64.2857 | 64.2857   | 2.3452  |
| 0.0761        | 42.0  | 1764 | 1.2013          | 63.0952 | 0.0    | 63.0952 | 63.0952   | 2.1905  |
| 0.0911        | 43.0  | 1806 | 1.2075          | 64.2857 | 0.0    | 64.2857 | 64.2857   | 2.1548  |
| 0.1081        | 44.0  | 1848 | 1.2134          | 66.6667 | 0.0    | 66.6667 | 66.6667   | 2.1548  |
| 0.089         | 45.0  | 1890 | 1.1861          | 64.2857 | 0.0    | 64.2857 | 64.2857   | 2.1905  |
| 0.0828        | 46.0  | 1932 | 1.1988          | 65.4762 | 0.0    | 65.4762 | 65.4762   | 2.1905  |
| 0.0818        | 47.0  | 1974 | 1.1886          | 64.2857 | 0.0    | 64.2857 | 64.2857   | 2.1905  |
| 0.0899        | 48.0  | 2016 | 1.1988          | 64.2857 | 0.0    | 64.2857 | 64.2857   | 2.1905  |
| 0.0923        | 49.0  | 2058 | 1.1968          | 65.4762 | 0.0    | 65.4762 | 65.4762   | 2.1905  |
| 0.0859        | 50.0  | 2100 | 1.1885          | 65.4762 | 0.0    | 65.4762 | 65.4762   | 2.1905  |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.10.1
- Tokenizers 0.13.2