--- library_name: peft license: mit base_model: NousResearch/Nous-Hermes-llama-2-7b tags: - axolotl - generated_from_trainer model-index: - name: 3efd3e47-99ad-4552-9b9d-57b7625b793c results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-llama-2-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9514728ea10d4b5e_train_data.json ds_type: json format: custom path: /workspace/input_data/9514728ea10d4b5e_train_data.json type: field_input: answer_prompt field_instruction: instructions field_output: gen_target format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: false group_by_length: false hub_model_id: kooff11/3efd3e47-99ad-4552-9b9d-57b7625b793c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_memory: 0: 130GiB 1: 130GiB max_steps: 20 micro_batch_size: 2 mlflow_experiment_name: /tmp/9514728ea10d4b5e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true quantization_config: llm_int8_enable_fp32_cpu_offload: false load_in_8bit: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 4056 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3efd3e47-99ad-4552-9b9d-57b7625b793c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 3efd3e47-99ad-4552-9b9d-57b7625b793c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 3efd3e47-99ad-4552-9b9d-57b7625b793c This model is a fine-tuned version of [NousResearch/Nous-Hermes-llama-2-7b](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1396 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9208 | 0.0027 | 1 | 2.9215 | | 2.2015 | 0.0136 | 5 | 1.4313 | | 0.1487 | 0.0273 | 10 | 0.2616 | | 0.1375 | 0.0409 | 15 | 0.2123 | | 0.1314 | 0.0545 | 20 | 0.1396 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1