--- library_name: transformers language: - el license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Baseline openai/whisper-tiny on Greek. Evaluated on 1701 audio samples results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_17_0- Greek type: mozilla-foundation/common_voice_17_0 config: el split: None args: 'config: el, split: test' metrics: - name: Wer type: wer value: 56.183418249189444 --- # Baseline openai/whisper-tiny on Greek. Evaluated on 1701 audio samples This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_17_0- Greek dataset. It achieves the following results on the evaluation set: - Loss: 0.8397 - Wer: 56.1834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.02 | 17.5439 | 1000 | 0.6888 | 56.2946 | | 0.0024 | 35.0877 | 2000 | 0.8397 | 56.1834 | | 0.001 | 52.6316 | 3000 | 0.9095 | 56.8041 | | 0.0006 | 70.1754 | 4000 | 0.9501 | 57.0079 | | 0.0005 | 87.7193 | 5000 | 0.9673 | 57.2487 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0