Automatic Speech Recognition
Transformers
Safetensors
Japanese
whisper
audio
hf-asr-leaderboard
Inference Endpoints
File size: 13,580 Bytes
8bf9b0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
from typing import Union, Optional, Dict, List, Any
import requests

import torch
import numpy as np

from transformers.pipelines.audio_utils import ffmpeg_read
from transformers.pipelines.automatic_speech_recognition import AutomaticSpeechRecognitionPipeline, chunk_iter
from transformers.utils import is_torchaudio_available
from transformers.modeling_utils import PreTrainedModel
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from stable_whisper import WhisperResult
from punctuators.models import PunctCapSegModelONNX


class Punctuator:

    ja_punctuations = ["!", "?", "、", "。"]

    def __init__(self, model: str = "pcs_47lang"):
        self.punctuation_model = PunctCapSegModelONNX.from_pretrained(model)

    def punctuate(self, pipeline_chunk: List[Dict[str, Any]]) -> List[Dict[str, Any]]:

        def validate_punctuation(raw: str, punctuated: str):
            if 'unk' in punctuated.lower() or any(p in raw for p in self.ja_punctuations):
                return raw
            if punctuated.count("。") > 1:
                ind = punctuated.rfind("。")
                punctuated = punctuated.replace("。", "")
                punctuated = punctuated[:ind] + "。" + punctuated[ind:]
            return punctuated

        text_edit = self.punctuation_model.infer([c['text'] for c in pipeline_chunk])
        return [
            {
                'timestamp': c['timestamp'],
                'text': validate_punctuation(c['text'], "".join(e))
            } for c, e in zip(pipeline_chunk, text_edit)
        ]


def _fix_timestamp(sample_rate: int, result: List[Dict[str, Any]], audio: np.ndarray) -> WhisperResult or None:

    def replace_none_ts(parts):
        total_dur = round(audio.shape[-1] / sample_rate, 3)
        _medium_dur = _ts_nonzero_mask = None

        def ts_nonzero_mask() -> np.ndarray:
            nonlocal _ts_nonzero_mask
            if _ts_nonzero_mask is None:
                _ts_nonzero_mask = np.array([(p['end'] or p['start']) is not None for p in parts])
            return _ts_nonzero_mask

        def medium_dur() -> float:
            nonlocal _medium_dur
            if _medium_dur is None:
                nonzero_dus = [p['end'] - p['start'] for p in parts if None not in (p['end'], p['start'])]
                nonzero_durs = np.array(nonzero_dus)
                _medium_dur = np.median(nonzero_durs) * 2 if len(nonzero_durs) else 2.0
            return _medium_dur

        def _curr_max_end(start: float, next_idx: float) -> float:
            max_end = total_dur
            if next_idx != len(parts):
                mask = np.flatnonzero(ts_nonzero_mask()[next_idx:])
                if len(mask):
                    _part = parts[mask[0]+next_idx]
                    max_end = _part['start'] or _part['end']

            new_end = round(start + medium_dur(), 3)
            if new_end > max_end:
                return max_end
            return new_end

        for i, part in enumerate(parts, 1):
            if part['start'] is None:
                is_first = i == 1
                if is_first:
                    new_start = round((part['end'] or 0) - medium_dur(), 3)
                    part['start'] = max(new_start, 0.0)
                else:
                    part['start'] = parts[i - 2]['end']
            if part['end'] is None:
                no_next_start = i == len(parts) or parts[i]['start'] is None
                part['end'] = _curr_max_end(part['start'], i) if no_next_start else parts[i]['start']

    words = [dict(start=word['timestamp'][0], end=word['timestamp'][1], word=word['text']) for word in result]
    replace_none_ts(words)
    return WhisperResult([words], force_order=True, check_sorted=True)


def fix_timestamp(pipeline_output: List[Dict[str, Any]], audio: np.ndarray, sample_rate: int) -> List[Dict[str, Any]]:
    result = _fix_timestamp(sample_rate=sample_rate, audio=audio, result=pipeline_output)
    result.adjust_by_silence(
        audio,
        q_levels=20,
        k_size=5,
        sample_rate=sample_rate,
        min_word_dur=None,
        word_level=True,
        verbose=True,
        nonspeech_error=0.1,
        use_word_position=True
    )
    if result.has_words:
        result.regroup(True)
    return [{"timestamp": [s.start, s.end], "text": s.text} for s in result.segments]


class KotobaWhisperPipeline(AutomaticSpeechRecognitionPipeline):

    def __init__(self,
                 model: "PreTrainedModel",
                 feature_extractor: Union["SequenceFeatureExtractor", str] = None,
                 tokenizer: Optional[PreTrainedTokenizer] = None,
                 device: Union[int, "torch.device"] = None,
                 torch_dtype: Optional[Union[str, "torch.dtype"]] = None,
                 punctuator: bool = True,
                 stable_ts: bool = False,
                 **kwargs):
        self.type = "seq2seq_whisper"
        self.stable_ts = stable_ts
        if punctuator:
            self.punctuator = Punctuator()
        else:
            self.punctuator = None
        super().__init__(
            model=model,
            feature_extractor=feature_extractor,
            tokenizer=tokenizer,
            device=device,
            torch_dtype=torch_dtype,
            **kwargs
        )

    def preprocess(self, inputs, chunk_length_s=0, stride_length_s=None):
        if isinstance(inputs, str):
            if inputs.startswith("http://") or inputs.startswith("https://"):
                # We need to actually check for a real protocol, otherwise it's impossible to use a local file
                # like http_huggingface_co.png
                inputs = requests.get(inputs).content
            else:
                with open(inputs, "rb") as f:
                    inputs = f.read()

        if isinstance(inputs, bytes):
            inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate)

        stride = None
        extra = {}
        if isinstance(inputs, dict):
            stride = inputs.pop("stride", None)
            # Accepting `"array"` which is the key defined in `datasets` for
            # better integration
            if not ("sampling_rate" in inputs and ("raw" in inputs or "array" in inputs)):
                raise ValueError(
                    "When passing a dictionary to AutomaticSpeechRecognitionPipeline, the dict needs to contain a "
                    '"raw" key containing the numpy array representing the audio and a "sampling_rate" key, '
                    "containing the sampling_rate associated with that array"
                )

            _inputs = inputs.pop("raw", None)
            if _inputs is None:
                # Remove path which will not be used from `datasets`.
                inputs.pop("path", None)
                _inputs = inputs.pop("array", None)
            in_sampling_rate = inputs.pop("sampling_rate")
            extra = inputs
            inputs = _inputs
            if in_sampling_rate != self.feature_extractor.sampling_rate:
                if is_torchaudio_available():
                    from torchaudio import functional as F
                else:
                    raise ImportError(
                        "torchaudio is required to resample audio samples in AutomaticSpeechRecognitionPipeline. "
                        "The torchaudio package can be installed through: `pip install torchaudio`."
                    )

                inputs = F.resample(
                    torch.from_numpy(inputs), in_sampling_rate, self.feature_extractor.sampling_rate
                ).numpy()
                ratio = self.feature_extractor.sampling_rate / in_sampling_rate
            else:
                ratio = 1
            if stride is not None:
                if stride[0] + stride[1] > inputs.shape[0]:
                    raise ValueError("Stride is too large for input")

                # Stride needs to get the chunk length here, it's going to get
                # swallowed by the `feature_extractor` later, and then batching
                # can add extra data in the inputs, so we need to keep track
                # of the original length in the stride so we can cut properly.
                stride = (inputs.shape[0], int(round(stride[0] * ratio)), int(round(stride[1] * ratio)))
        if not isinstance(inputs, np.ndarray):
            raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`")
        if len(inputs.shape) != 1:
            raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline")

        if chunk_length_s:
            if stride_length_s is None:
                stride_length_s = chunk_length_s / 6

            if isinstance(stride_length_s, (int, float)):
                stride_length_s = [stride_length_s, stride_length_s]

            # XXX: Carefuly, this variable will not exist in `seq2seq` setting.
            # Currently chunking is not possible at this level for `seq2seq` so
            # it's ok.
            align_to = getattr(self.model.config, "inputs_to_logits_ratio", 1)
            chunk_len = int(round(chunk_length_s * self.feature_extractor.sampling_rate / align_to) * align_to)
            stride_left = int(round(stride_length_s[0] * self.feature_extractor.sampling_rate / align_to) * align_to)
            stride_right = int(round(stride_length_s[1] * self.feature_extractor.sampling_rate / align_to) * align_to)

            if chunk_len < stride_left + stride_right:
                raise ValueError("Chunk length must be superior to stride length")

            for item in chunk_iter(
                    inputs, self.feature_extractor, chunk_len, stride_left, stride_right, self.torch_dtype
            ):
                item["audio_array"] = inputs
                yield item
        else:
            if inputs.shape[0] > self.feature_extractor.n_samples:
                processed = self.feature_extractor(
                    inputs,
                    sampling_rate=self.feature_extractor.sampling_rate,
                    truncation=False,
                    padding="longest",
                    return_tensors="pt",
                )
            else:
                processed = self.feature_extractor(
                    inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt"
                )

            if self.torch_dtype is not None:
                processed = processed.to(dtype=self.torch_dtype)
            if stride is not None:
                processed["stride"] = stride
            yield {"is_last": True, "audio_array": inputs, **processed, **extra}

    def _forward(self, model_inputs, return_timestamps=False, **generate_kwargs):
        attention_mask = model_inputs.pop("attention_mask", None)
        stride = model_inputs.pop("stride", None)
        is_last = model_inputs.pop("is_last")
        audio_array = model_inputs.pop("audio_array")
        encoder = self.model.get_encoder()
        # Consume values so we can let extra information flow freely through
        # the pipeline (important for `partial` in microphone)
        if type(return_timestamps) is not bool:
            raise ValueError("return_timestamps should be bool")
        if "input_features" in model_inputs:
            inputs = model_inputs.pop("input_features")
        elif "input_values" in model_inputs:
            inputs = model_inputs.pop("input_values")
        else:
            raise ValueError(
                "Seq2Seq speech recognition model requires either a "
                f"`input_features` or `input_values` key, but only has {model_inputs.keys()}"
            )

        # custom processing for Whisper timestamps and word-level timestamps
        generate_kwargs["return_timestamps"] = True
        if inputs.shape[-1] > self.feature_extractor.nb_max_frames:
            generate_kwargs["input_features"] = inputs
        else:
            generate_kwargs["encoder_outputs"] = encoder(inputs, attention_mask=attention_mask)

        tokens = self.model.generate(attention_mask=attention_mask, **generate_kwargs)
        # whisper longform generation stores timestamps in "segments"
        out = {"tokens": tokens}
        if self.type == "seq2seq_whisper":
            if stride is not None:
                out["stride"] = stride

        # Leftover
        extra = model_inputs
        return {"is_last": is_last, "audio_array": audio_array, **out, **extra}

    def postprocess(self,
                    model_outputs,
                    decoder_kwargs: Optional[Dict] = None,
                    return_timestamps=None,
                    return_language=None):
        assert len(model_outputs) > 0
        for model_output in model_outputs:
            audio_array = model_output.pop("audio_array")[0]
        outputs = super().postprocess(
            model_outputs=model_outputs,
            decoder_kwargs=decoder_kwargs,
            return_timestamps=True,
            return_language=return_language
        )
        if self.stable_ts:
            outputs["chunks"] = fix_timestamp(
                pipeline_output=outputs["chunks"], audio=audio_array, sample_rate=self.feature_extractor.sampling_rate
            )
        if self.punctuator:
            outputs["chunks"] = self.punctuator.punctuate(outputs["chunks"])
        outputs["text"] = "".join([c["text"] for c in outputs["chunks"]])
        if not return_timestamps:
            outputs.pop("chunks")
        return outputs