init
Browse files- pipeline/kotoba_whisper.py +306 -0
- pipeline/push_pipeline.py +29 -0
- pipeline/test_pipeline.py +154 -0
pipeline/kotoba_whisper.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union, Optional, Dict, List, Any
|
2 |
+
import requests
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
8 |
+
from transformers.pipelines.automatic_speech_recognition import AutomaticSpeechRecognitionPipeline, chunk_iter
|
9 |
+
from transformers.utils import is_torchaudio_available
|
10 |
+
from transformers.modeling_utils import PreTrainedModel
|
11 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
12 |
+
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
|
13 |
+
from stable_whisper import WhisperResult
|
14 |
+
from punctuators.models import PunctCapSegModelONNX
|
15 |
+
|
16 |
+
|
17 |
+
class Punctuator:
|
18 |
+
|
19 |
+
ja_punctuations = ["!", "?", "、", "。"]
|
20 |
+
|
21 |
+
def __init__(self, model: str = "pcs_47lang"):
|
22 |
+
self.punctuation_model = PunctCapSegModelONNX.from_pretrained(model)
|
23 |
+
|
24 |
+
def punctuate(self, pipeline_chunk: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
25 |
+
|
26 |
+
def validate_punctuation(raw: str, punctuated: str):
|
27 |
+
if 'unk' in punctuated.lower() or any(p in raw for p in self.ja_punctuations):
|
28 |
+
return raw
|
29 |
+
if punctuated.count("。") > 1:
|
30 |
+
ind = punctuated.rfind("。")
|
31 |
+
punctuated = punctuated.replace("。", "")
|
32 |
+
punctuated = punctuated[:ind] + "。" + punctuated[ind:]
|
33 |
+
return punctuated
|
34 |
+
|
35 |
+
text_edit = self.punctuation_model.infer([c['text'] for c in pipeline_chunk])
|
36 |
+
return [
|
37 |
+
{
|
38 |
+
'timestamp': c['timestamp'],
|
39 |
+
'text': validate_punctuation(c['text'], "".join(e))
|
40 |
+
} for c, e in zip(pipeline_chunk, text_edit)
|
41 |
+
]
|
42 |
+
|
43 |
+
|
44 |
+
def _fix_timestamp(sample_rate: int, result: List[Dict[str, Any]], audio: np.ndarray) -> WhisperResult or None:
|
45 |
+
|
46 |
+
def replace_none_ts(parts):
|
47 |
+
total_dur = round(audio.shape[-1] / sample_rate, 3)
|
48 |
+
_medium_dur = _ts_nonzero_mask = None
|
49 |
+
|
50 |
+
def ts_nonzero_mask() -> np.ndarray:
|
51 |
+
nonlocal _ts_nonzero_mask
|
52 |
+
if _ts_nonzero_mask is None:
|
53 |
+
_ts_nonzero_mask = np.array([(p['end'] or p['start']) is not None for p in parts])
|
54 |
+
return _ts_nonzero_mask
|
55 |
+
|
56 |
+
def medium_dur() -> float:
|
57 |
+
nonlocal _medium_dur
|
58 |
+
if _medium_dur is None:
|
59 |
+
nonzero_dus = [p['end'] - p['start'] for p in parts if None not in (p['end'], p['start'])]
|
60 |
+
nonzero_durs = np.array(nonzero_dus)
|
61 |
+
_medium_dur = np.median(nonzero_durs) * 2 if len(nonzero_durs) else 2.0
|
62 |
+
return _medium_dur
|
63 |
+
|
64 |
+
def _curr_max_end(start: float, next_idx: float) -> float:
|
65 |
+
max_end = total_dur
|
66 |
+
if next_idx != len(parts):
|
67 |
+
mask = np.flatnonzero(ts_nonzero_mask()[next_idx:])
|
68 |
+
if len(mask):
|
69 |
+
_part = parts[mask[0]+next_idx]
|
70 |
+
max_end = _part['start'] or _part['end']
|
71 |
+
|
72 |
+
new_end = round(start + medium_dur(), 3)
|
73 |
+
if new_end > max_end:
|
74 |
+
return max_end
|
75 |
+
return new_end
|
76 |
+
|
77 |
+
for i, part in enumerate(parts, 1):
|
78 |
+
if part['start'] is None:
|
79 |
+
is_first = i == 1
|
80 |
+
if is_first:
|
81 |
+
new_start = round((part['end'] or 0) - medium_dur(), 3)
|
82 |
+
part['start'] = max(new_start, 0.0)
|
83 |
+
else:
|
84 |
+
part['start'] = parts[i - 2]['end']
|
85 |
+
if part['end'] is None:
|
86 |
+
no_next_start = i == len(parts) or parts[i]['start'] is None
|
87 |
+
part['end'] = _curr_max_end(part['start'], i) if no_next_start else parts[i]['start']
|
88 |
+
|
89 |
+
words = [dict(start=word['timestamp'][0], end=word['timestamp'][1], word=word['text']) for word in result]
|
90 |
+
replace_none_ts(words)
|
91 |
+
return WhisperResult([words], force_order=True, check_sorted=True)
|
92 |
+
|
93 |
+
|
94 |
+
def fix_timestamp(pipeline_output: List[Dict[str, Any]], audio: np.ndarray, sample_rate: int) -> List[Dict[str, Any]]:
|
95 |
+
result = _fix_timestamp(sample_rate=sample_rate, audio=audio, result=pipeline_output)
|
96 |
+
result.adjust_by_silence(
|
97 |
+
audio,
|
98 |
+
q_levels=20,
|
99 |
+
k_size=5,
|
100 |
+
sample_rate=sample_rate,
|
101 |
+
min_word_dur=None,
|
102 |
+
word_level=True,
|
103 |
+
verbose=True,
|
104 |
+
nonspeech_error=0.1,
|
105 |
+
use_word_position=True
|
106 |
+
)
|
107 |
+
if result.has_words:
|
108 |
+
result.regroup(True)
|
109 |
+
return [{"timestamp": [s.start, s.end], "text": s.text} for s in result.segments]
|
110 |
+
|
111 |
+
|
112 |
+
class KotobaWhisperPipeline(AutomaticSpeechRecognitionPipeline):
|
113 |
+
|
114 |
+
def __init__(self,
|
115 |
+
model: "PreTrainedModel",
|
116 |
+
feature_extractor: Union["SequenceFeatureExtractor", str] = None,
|
117 |
+
tokenizer: Optional[PreTrainedTokenizer] = None,
|
118 |
+
device: Union[int, "torch.device"] = None,
|
119 |
+
torch_dtype: Optional[Union[str, "torch.dtype"]] = None,
|
120 |
+
punctuator: bool = True,
|
121 |
+
stable_ts: bool = False,
|
122 |
+
**kwargs):
|
123 |
+
self.type = "seq2seq_whisper"
|
124 |
+
self.stable_ts = stable_ts
|
125 |
+
if punctuator:
|
126 |
+
self.punctuator = Punctuator()
|
127 |
+
else:
|
128 |
+
self.punctuator = None
|
129 |
+
super().__init__(
|
130 |
+
model=model,
|
131 |
+
feature_extractor=feature_extractor,
|
132 |
+
tokenizer=tokenizer,
|
133 |
+
device=device,
|
134 |
+
torch_dtype=torch_dtype,
|
135 |
+
**kwargs
|
136 |
+
)
|
137 |
+
|
138 |
+
def preprocess(self, inputs, chunk_length_s=0, stride_length_s=None):
|
139 |
+
if isinstance(inputs, str):
|
140 |
+
if inputs.startswith("http://") or inputs.startswith("https://"):
|
141 |
+
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
|
142 |
+
# like http_huggingface_co.png
|
143 |
+
inputs = requests.get(inputs).content
|
144 |
+
else:
|
145 |
+
with open(inputs, "rb") as f:
|
146 |
+
inputs = f.read()
|
147 |
+
|
148 |
+
if isinstance(inputs, bytes):
|
149 |
+
inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate)
|
150 |
+
|
151 |
+
stride = None
|
152 |
+
extra = {}
|
153 |
+
if isinstance(inputs, dict):
|
154 |
+
stride = inputs.pop("stride", None)
|
155 |
+
# Accepting `"array"` which is the key defined in `datasets` for
|
156 |
+
# better integration
|
157 |
+
if not ("sampling_rate" in inputs and ("raw" in inputs or "array" in inputs)):
|
158 |
+
raise ValueError(
|
159 |
+
"When passing a dictionary to AutomaticSpeechRecognitionPipeline, the dict needs to contain a "
|
160 |
+
'"raw" key containing the numpy array representing the audio and a "sampling_rate" key, '
|
161 |
+
"containing the sampling_rate associated with that array"
|
162 |
+
)
|
163 |
+
|
164 |
+
_inputs = inputs.pop("raw", None)
|
165 |
+
if _inputs is None:
|
166 |
+
# Remove path which will not be used from `datasets`.
|
167 |
+
inputs.pop("path", None)
|
168 |
+
_inputs = inputs.pop("array", None)
|
169 |
+
in_sampling_rate = inputs.pop("sampling_rate")
|
170 |
+
extra = inputs
|
171 |
+
inputs = _inputs
|
172 |
+
if in_sampling_rate != self.feature_extractor.sampling_rate:
|
173 |
+
if is_torchaudio_available():
|
174 |
+
from torchaudio import functional as F
|
175 |
+
else:
|
176 |
+
raise ImportError(
|
177 |
+
"torchaudio is required to resample audio samples in AutomaticSpeechRecognitionPipeline. "
|
178 |
+
"The torchaudio package can be installed through: `pip install torchaudio`."
|
179 |
+
)
|
180 |
+
|
181 |
+
inputs = F.resample(
|
182 |
+
torch.from_numpy(inputs), in_sampling_rate, self.feature_extractor.sampling_rate
|
183 |
+
).numpy()
|
184 |
+
ratio = self.feature_extractor.sampling_rate / in_sampling_rate
|
185 |
+
else:
|
186 |
+
ratio = 1
|
187 |
+
if stride is not None:
|
188 |
+
if stride[0] + stride[1] > inputs.shape[0]:
|
189 |
+
raise ValueError("Stride is too large for input")
|
190 |
+
|
191 |
+
# Stride needs to get the chunk length here, it's going to get
|
192 |
+
# swallowed by the `feature_extractor` later, and then batching
|
193 |
+
# can add extra data in the inputs, so we need to keep track
|
194 |
+
# of the original length in the stride so we can cut properly.
|
195 |
+
stride = (inputs.shape[0], int(round(stride[0] * ratio)), int(round(stride[1] * ratio)))
|
196 |
+
if not isinstance(inputs, np.ndarray):
|
197 |
+
raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`")
|
198 |
+
if len(inputs.shape) != 1:
|
199 |
+
raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline")
|
200 |
+
|
201 |
+
if chunk_length_s:
|
202 |
+
if stride_length_s is None:
|
203 |
+
stride_length_s = chunk_length_s / 6
|
204 |
+
|
205 |
+
if isinstance(stride_length_s, (int, float)):
|
206 |
+
stride_length_s = [stride_length_s, stride_length_s]
|
207 |
+
|
208 |
+
# XXX: Carefuly, this variable will not exist in `seq2seq` setting.
|
209 |
+
# Currently chunking is not possible at this level for `seq2seq` so
|
210 |
+
# it's ok.
|
211 |
+
align_to = getattr(self.model.config, "inputs_to_logits_ratio", 1)
|
212 |
+
chunk_len = int(round(chunk_length_s * self.feature_extractor.sampling_rate / align_to) * align_to)
|
213 |
+
stride_left = int(round(stride_length_s[0] * self.feature_extractor.sampling_rate / align_to) * align_to)
|
214 |
+
stride_right = int(round(stride_length_s[1] * self.feature_extractor.sampling_rate / align_to) * align_to)
|
215 |
+
|
216 |
+
if chunk_len < stride_left + stride_right:
|
217 |
+
raise ValueError("Chunk length must be superior to stride length")
|
218 |
+
|
219 |
+
for item in chunk_iter(
|
220 |
+
inputs, self.feature_extractor, chunk_len, stride_left, stride_right, self.torch_dtype
|
221 |
+
):
|
222 |
+
item["audio_array"] = inputs
|
223 |
+
yield item
|
224 |
+
else:
|
225 |
+
if inputs.shape[0] > self.feature_extractor.n_samples:
|
226 |
+
processed = self.feature_extractor(
|
227 |
+
inputs,
|
228 |
+
sampling_rate=self.feature_extractor.sampling_rate,
|
229 |
+
truncation=False,
|
230 |
+
padding="longest",
|
231 |
+
return_tensors="pt",
|
232 |
+
)
|
233 |
+
else:
|
234 |
+
processed = self.feature_extractor(
|
235 |
+
inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt"
|
236 |
+
)
|
237 |
+
|
238 |
+
if self.torch_dtype is not None:
|
239 |
+
processed = processed.to(dtype=self.torch_dtype)
|
240 |
+
if stride is not None:
|
241 |
+
processed["stride"] = stride
|
242 |
+
yield {"is_last": True, "audio_array": inputs, **processed, **extra}
|
243 |
+
|
244 |
+
def _forward(self, model_inputs, return_timestamps=False, **generate_kwargs):
|
245 |
+
attention_mask = model_inputs.pop("attention_mask", None)
|
246 |
+
stride = model_inputs.pop("stride", None)
|
247 |
+
is_last = model_inputs.pop("is_last")
|
248 |
+
audio_array = model_inputs.pop("audio_array")
|
249 |
+
encoder = self.model.get_encoder()
|
250 |
+
# Consume values so we can let extra information flow freely through
|
251 |
+
# the pipeline (important for `partial` in microphone)
|
252 |
+
if type(return_timestamps) is not bool:
|
253 |
+
raise ValueError("return_timestamps should be bool")
|
254 |
+
if "input_features" in model_inputs:
|
255 |
+
inputs = model_inputs.pop("input_features")
|
256 |
+
elif "input_values" in model_inputs:
|
257 |
+
inputs = model_inputs.pop("input_values")
|
258 |
+
else:
|
259 |
+
raise ValueError(
|
260 |
+
"Seq2Seq speech recognition model requires either a "
|
261 |
+
f"`input_features` or `input_values` key, but only has {model_inputs.keys()}"
|
262 |
+
)
|
263 |
+
|
264 |
+
# custom processing for Whisper timestamps and word-level timestamps
|
265 |
+
generate_kwargs["return_timestamps"] = True
|
266 |
+
if inputs.shape[-1] > self.feature_extractor.nb_max_frames:
|
267 |
+
generate_kwargs["input_features"] = inputs
|
268 |
+
else:
|
269 |
+
generate_kwargs["encoder_outputs"] = encoder(inputs, attention_mask=attention_mask)
|
270 |
+
|
271 |
+
tokens = self.model.generate(attention_mask=attention_mask, **generate_kwargs)
|
272 |
+
# whisper longform generation stores timestamps in "segments"
|
273 |
+
out = {"tokens": tokens}
|
274 |
+
if self.type == "seq2seq_whisper":
|
275 |
+
if stride is not None:
|
276 |
+
out["stride"] = stride
|
277 |
+
|
278 |
+
# Leftover
|
279 |
+
extra = model_inputs
|
280 |
+
return {"is_last": is_last, "audio_array": audio_array, **out, **extra}
|
281 |
+
|
282 |
+
def postprocess(self,
|
283 |
+
model_outputs,
|
284 |
+
decoder_kwargs: Optional[Dict] = None,
|
285 |
+
return_timestamps=None,
|
286 |
+
return_language=None):
|
287 |
+
assert len(model_outputs) > 0
|
288 |
+
for model_output in model_outputs:
|
289 |
+
audio_array = model_output.pop("audio_array")[0]
|
290 |
+
outputs = super().postprocess(
|
291 |
+
model_outputs=model_outputs,
|
292 |
+
decoder_kwargs=decoder_kwargs,
|
293 |
+
return_timestamps=True,
|
294 |
+
return_language=return_language
|
295 |
+
)
|
296 |
+
if self.stable_ts:
|
297 |
+
outputs["chunks"] = fix_timestamp(
|
298 |
+
pipeline_output=outputs["chunks"], audio=audio_array, sample_rate=self.feature_extractor.sampling_rate
|
299 |
+
)
|
300 |
+
if self.punctuator:
|
301 |
+
outputs["chunks"] = self.punctuator.punctuate(outputs["chunks"])
|
302 |
+
outputs["text"] = "".join([c["text"] for c in outputs["chunks"]])
|
303 |
+
if not return_timestamps:
|
304 |
+
outputs.pop("chunks")
|
305 |
+
return outputs
|
306 |
+
|
pipeline/push_pipeline.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from kotoba_whisper import KotobaWhisperPipeline
|
2 |
+
from transformers.pipelines import PIPELINE_REGISTRY, pipeline
|
3 |
+
from transformers import WhisperForConditionalGeneration, TFWhisperForConditionalGeneration
|
4 |
+
|
5 |
+
|
6 |
+
model_alias = "kotoba-tech/kotoba-whisper-v2.1"
|
7 |
+
PIPELINE_REGISTRY.register_pipeline(
|
8 |
+
"kotoba-whisper",
|
9 |
+
pipeline_class=KotobaWhisperPipeline,
|
10 |
+
pt_model=WhisperForConditionalGeneration,
|
11 |
+
tf_model=TFWhisperForConditionalGeneration
|
12 |
+
)
|
13 |
+
pipe = pipeline(
|
14 |
+
task="kotoba-whisper",
|
15 |
+
model="kotoba-tech/kotoba-whisper-v2.0",
|
16 |
+
chunk_length_s=15,
|
17 |
+
batch_size=16,
|
18 |
+
punctuator=True,
|
19 |
+
stable_ts=True,
|
20 |
+
)
|
21 |
+
pipe.push_to_hub(model_alias)
|
22 |
+
pipe = pipeline(model=model_alias,
|
23 |
+
punctuator=True,
|
24 |
+
stable_ts=True,
|
25 |
+
chunk_length_s=15,
|
26 |
+
batch_size=16,
|
27 |
+
trust_remote_code=True)
|
28 |
+
|
29 |
+
|
pipeline/test_pipeline.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pprint import pprint
|
2 |
+
from datasets import load_dataset
|
3 |
+
from transformers.pipelines import pipeline
|
4 |
+
|
5 |
+
model_alias = "kotoba-tech/kotoba-whisper-v1.1"
|
6 |
+
|
7 |
+
print("""### P + S ###""")
|
8 |
+
pipe = pipeline(model=model_alias,
|
9 |
+
punctuator=True,
|
10 |
+
stable_ts=True,
|
11 |
+
chunk_length_s=15,
|
12 |
+
batch_size=16,
|
13 |
+
trust_remote_code=True)
|
14 |
+
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
|
15 |
+
for i in dataset:
|
16 |
+
if i["audio"]["path"] == "long_interview_1.mp3":
|
17 |
+
i["audio"]["array"] = i["audio"]["array"][:7938000]
|
18 |
+
prediction = pipe(
|
19 |
+
i["audio"],
|
20 |
+
return_timestamps=True,
|
21 |
+
generate_kwargs={"language": "japanese", "task": "transcribe"}
|
22 |
+
)
|
23 |
+
pprint(prediction)
|
24 |
+
break
|
25 |
+
|
26 |
+
print("""### P ###""")
|
27 |
+
pipe = pipeline(model=model_alias,
|
28 |
+
punctuator=True,
|
29 |
+
stable_ts=False,
|
30 |
+
chunk_length_s=15,
|
31 |
+
batch_size=16,
|
32 |
+
trust_remote_code=True)
|
33 |
+
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
|
34 |
+
for i in dataset:
|
35 |
+
if i["audio"]["path"] == "long_interview_1.mp3":
|
36 |
+
i["audio"]["array"] = i["audio"]["array"][:7938000]
|
37 |
+
prediction = pipe(
|
38 |
+
i["audio"],
|
39 |
+
return_timestamps=True,
|
40 |
+
generate_kwargs={"language": "japanese", "task": "transcribe"}
|
41 |
+
)
|
42 |
+
pprint(prediction)
|
43 |
+
break
|
44 |
+
|
45 |
+
print("""### S ###""")
|
46 |
+
pipe = pipeline(model=model_alias,
|
47 |
+
punctuator=False,
|
48 |
+
stable_ts=True,
|
49 |
+
chunk_length_s=15,
|
50 |
+
batch_size=16,
|
51 |
+
trust_remote_code=True)
|
52 |
+
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
|
53 |
+
for i in dataset:
|
54 |
+
if i["audio"]["path"] == "long_interview_1.mp3":
|
55 |
+
i["audio"]["array"] = i["audio"]["array"][:7938000]
|
56 |
+
prediction = pipe(
|
57 |
+
i["audio"],
|
58 |
+
return_timestamps=True,
|
59 |
+
generate_kwargs={"language": "japanese", "task": "transcribe"}
|
60 |
+
)
|
61 |
+
pprint(prediction)
|
62 |
+
break
|
63 |
+
|
64 |
+
print("""### RAW ###""")
|
65 |
+
pipe = pipeline(model=model_alias,
|
66 |
+
punctuator=False,
|
67 |
+
stable_ts=False,
|
68 |
+
chunk_length_s=15,
|
69 |
+
batch_size=16,
|
70 |
+
trust_remote_code=True)
|
71 |
+
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
|
72 |
+
for i in dataset:
|
73 |
+
if i["audio"]["path"] == "long_interview_1.mp3":
|
74 |
+
i["audio"]["array"] = i["audio"]["array"][:7938000]
|
75 |
+
prediction = pipe(
|
76 |
+
i["audio"],
|
77 |
+
return_timestamps=True,
|
78 |
+
generate_kwargs={"language": "japanese", "task": "transcribe"}
|
79 |
+
)
|
80 |
+
pprint(prediction)
|
81 |
+
break
|
82 |
+
|
83 |
+
print("""### P + S ###""")
|
84 |
+
pipe = pipeline(model=model_alias,
|
85 |
+
punctuator=True,
|
86 |
+
stable_ts=True,
|
87 |
+
chunk_length_s=15,
|
88 |
+
batch_size=16,
|
89 |
+
trust_remote_code=True)
|
90 |
+
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
|
91 |
+
for i in dataset:
|
92 |
+
if i["audio"]["path"] == "long_interview_1.mp3":
|
93 |
+
i["audio"]["array"] = i["audio"]["array"][:7938000]
|
94 |
+
prediction = pipe(
|
95 |
+
i["audio"],
|
96 |
+
generate_kwargs={"language": "japanese", "task": "transcribe"}
|
97 |
+
)
|
98 |
+
pprint(prediction)
|
99 |
+
break
|
100 |
+
|
101 |
+
print("""### P ###""")
|
102 |
+
pipe = pipeline(model=model_alias,
|
103 |
+
punctuator=True,
|
104 |
+
stable_ts=False,
|
105 |
+
chunk_length_s=15,
|
106 |
+
batch_size=16,
|
107 |
+
trust_remote_code=True)
|
108 |
+
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
|
109 |
+
for i in dataset:
|
110 |
+
if i["audio"]["path"] == "long_interview_1.mp3":
|
111 |
+
i["audio"]["array"] = i["audio"]["array"][:7938000]
|
112 |
+
prediction = pipe(
|
113 |
+
i["audio"],
|
114 |
+
generate_kwargs={"language": "japanese", "task": "transcribe"}
|
115 |
+
)
|
116 |
+
pprint(prediction)
|
117 |
+
break
|
118 |
+
|
119 |
+
print("""### S ###""")
|
120 |
+
pipe = pipeline(model=model_alias,
|
121 |
+
punctuator=False,
|
122 |
+
stable_ts=True,
|
123 |
+
chunk_length_s=15,
|
124 |
+
batch_size=16,
|
125 |
+
trust_remote_code=True)
|
126 |
+
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
|
127 |
+
for i in dataset:
|
128 |
+
if i["audio"]["path"] == "long_interview_1.mp3":
|
129 |
+
i["audio"]["array"] = i["audio"]["array"][:7938000]
|
130 |
+
prediction = pipe(
|
131 |
+
i["audio"],
|
132 |
+
generate_kwargs={"language": "japanese", "task": "transcribe"}
|
133 |
+
)
|
134 |
+
pprint(prediction)
|
135 |
+
break
|
136 |
+
|
137 |
+
print("""### RAW ###""")
|
138 |
+
pipe = pipeline(model=model_alias,
|
139 |
+
punctuator=False,
|
140 |
+
stable_ts=False,
|
141 |
+
chunk_length_s=15,
|
142 |
+
batch_size=16,
|
143 |
+
trust_remote_code=True)
|
144 |
+
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
|
145 |
+
for i in dataset:
|
146 |
+
if i["audio"]["path"] == "long_interview_1.mp3":
|
147 |
+
i["audio"]["array"] = i["audio"]["array"][:7938000]
|
148 |
+
prediction = pipe(
|
149 |
+
i["audio"],
|
150 |
+
generate_kwargs={"language": "japanese", "task": "transcribe"}
|
151 |
+
)
|
152 |
+
pprint(prediction)
|
153 |
+
break
|
154 |
+
|