kr-manish commited on
Commit
5963672
1 Parent(s): d9b8522

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,897 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy@1
8
+ - cosine_accuracy@3
9
+ - cosine_accuracy@5
10
+ - cosine_accuracy@10
11
+ - cosine_precision@1
12
+ - cosine_precision@3
13
+ - cosine_precision@5
14
+ - cosine_precision@10
15
+ - cosine_recall@1
16
+ - cosine_recall@3
17
+ - cosine_recall@5
18
+ - cosine_recall@10
19
+ - cosine_ndcg@10
20
+ - cosine_mrr@10
21
+ - cosine_map@100
22
+ pipeline_tag: sentence-similarity
23
+ tags:
24
+ - sentence-transformers
25
+ - sentence-similarity
26
+ - feature-extraction
27
+ - generated_from_trainer
28
+ - dataset_size:160
29
+ - loss:MatryoshkaLoss
30
+ - loss:MultipleNegativesRankingLoss
31
+ widget:
32
+ - source_sentence: Priya Softweb has specific guidelines for managing the arrival
33
+ of international shipments. To ensure smooth customs clearance, the company requires
34
+ an authorization letter from the client, written on their company letterhead.
35
+ This letter must clearly state that the shipment is "Not for commercial purposes"
36
+ to prevent the application of duty charges by the customs office. All international
37
+ shipments should be addressed to Keyur Patel at Priya Softweb Solutions Pvt. Ltd.,
38
+ with the company's full address and contact information clearly indicated. Employees
39
+ are advised to contact the HR department for the correct format of the authorization
40
+ letter and to inform Keyur Patel about the expected arrival of such shipments.
41
+ These procedures streamline the handling of international shipments and help avoid
42
+ potential customs-related delays or complications.
43
+ sentences:
44
+ - Female employees at Priya Softweb are allowed to wear:- Formal trousers/jeans
45
+ and shirts- Sarees- Formal skirts- T-shirts with collars- Chudidars & Kurtis-
46
+ Salwar SuitsHowever, they are not allowed to wear:- Round neck, deep neck, cold
47
+ shoulder, and fancy T-shirts- Low waist jeans, short T-shirts, and short shirts-
48
+ Transparent wear- Wear with deep-cut sleeves- Capris- Slippers- Visible tattoos
49
+ & piercingsPriya Softweb emphasizes a professional appearance for its employees
50
+ while providing flexibility in choosing appropriate attire within the defined
51
+ guidelines.
52
+ - Priya Softweb has specific guidelines for managing the arrival of international
53
+ shipments. To ensure smooth customs clearance, the company requires an authorization
54
+ letter from the client, written on their company letterhead. This letter must
55
+ clearly state that the shipment is "Not for commercial purposes" to prevent the
56
+ application of duty charges by the customs office. All international shipments
57
+ should be addressed to Keyur Patel at Priya Softweb Solutions Pvt. Ltd., with
58
+ the company's full address and contact information clearly indicated. Employees
59
+ are advised to contact the HR department for the correct format of the authorization
60
+ letter and to inform Keyur Patel about the expected arrival of such shipments.
61
+ These procedures streamline the handling of international shipments and help avoid
62
+ potential customs-related delays or complications.
63
+ - Priya Softweb has a structured onboarding process for new employees. Upon joining,
64
+ new hires undergo an induction program conducted by the HR department. This program
65
+ introduces them to the company's culture, values, processes, and policies, ensuring
66
+ they are well-acquainted with the work environment and expectations. HR also facilitates
67
+ introductions to the relevant department and sends out a company-wide email announcing
68
+ the new employee's arrival. Additionally, new employees are required to complete
69
+ quarterly Ethics & Compliance training to familiarize themselves with the company's
70
+ ethical standards and compliance requirements. This comprehensive onboarding approach
71
+ helps new employees integrate seamlessly into the company and quickly become productive
72
+ members of the team.
73
+ - source_sentence: The sanctioning and approving authority for Casual Leave, Sick
74
+ Leave, and Privilege Leave at Priya Softweb is the Leader/Manager.
75
+ sentences:
76
+ - Even if an employee utilizes the 'Hybrid' Work From Home model for only half a
77
+ day, a full count is deducted from their monthly allowance of 4 WFH days. This
78
+ clarifies that any utilization of the 'Hybrid' model, regardless of the duration,
79
+ is considered a full WFH day and counts towards the monthly limit.
80
+ - The sanctioning and approving authority for Casual Leave, Sick Leave, and Privilege
81
+ Leave at Priya Softweb is the Leader/Manager.
82
+ - To be eligible for gratuity at Priya Softweb, an employee must have completed
83
+ a minimum of 5 continuous years of service. This ensures that only long-term employees
84
+ are entitled to this benefit.
85
+ - source_sentence: 'Priya Softweb utilizes Employee Agreements/Bonds as a mechanism
86
+ to retain talent within the company. These agreements are implemented in various
87
+ situations, including: * **Retention:** When the company seeks to retain valuable
88
+ employees who have resigned, a 15-month bond may be applied based on the company''s
89
+ requirements. * **Freshers:** New employees with 0 to 1 year of experience are
90
+ generally subject to an 18-month bond. * **Rejoining:** When former employees
91
+ are rehired, a 15-month bond is typically implemented. These bond periods vary
92
+ based on the specific circumstances and aim to ensure a certain level of commitment
93
+ from employees, especially in roles that require significant investment in training
94
+ and development.'
95
+ sentences:
96
+ - To claim gratuity, employees must submit an application form to the Accounts department.
97
+ This formal process ensures proper documentation and timely processing of the
98
+ gratuity payment.
99
+ - Priya Softweb acknowledges the efforts of employees who work late hours. Employees
100
+ working more than 11 hours on weekdays are eligible for reimbursement of up to
101
+ Rs. 250/- for their dinner expenses. However, this reimbursement is subject to
102
+ approval from their Department Head. This policy recognizes the extra effort put
103
+ in by employees working extended hours and provides some financial compensation
104
+ for their meals.
105
+ - 'Priya Softweb utilizes Employee Agreements/Bonds as a mechanism to retain talent
106
+ within the company. These agreements are implemented in various situations, including:
107
+ * **Retention:** When the company seeks to retain valuable employees who have
108
+ resigned, a 15-month bond may be applied based on the company''s requirements.
109
+ * **Freshers:** New employees with 0 to 1 year of experience are generally subject
110
+ to an 18-month bond. * **Rejoining:** When former employees are rehired, a 15-month
111
+ bond is typically implemented. These bond periods vary based on the specific circumstances
112
+ and aim to ensure a certain level of commitment from employees, especially in
113
+ roles that require significant investment in training and development.'
114
+ - source_sentence: Chewing tobacco, gutka, gum, or smoking within the office premises
115
+ is strictly prohibited at Priya Softweb. Bringing such substances inside the office
116
+ will lead to penalties and potentially harsh decisions from management. This strict
117
+ policy reflects Priya Softweb's commitment to a healthy and clean work environment.
118
+ sentences:
119
+ - Chewing tobacco, gutka, gum, or smoking within the office premises is strictly
120
+ prohibited at Priya Softweb. Bringing such substances inside the office will lead
121
+ to penalties and potentially harsh decisions from management. This strict policy
122
+ reflects Priya Softweb's commitment to a healthy and clean work environment.
123
+ - In situations of 'Bad Weather', the HR department at Priya Softweb will enable
124
+ the 'Work From Home' option within the OMS system based on the severity of the
125
+ weather and potential safety risks for employees commuting to the office. This
126
+ proactive approach prioritizes employee safety and allows for flexible work arrangements
127
+ during adverse weather events.
128
+ - Priya Softweb employees are entitled to 5 Casual Leaves (CL) per year.
129
+ - source_sentence: Priya Softweb prioritizes the health and wellness of its employees.
130
+ The company strongly prohibits chewing tobacco, gutka, gum, or smoking within
131
+ the office premises. Penalties and harsh decisions from management await anyone
132
+ found bringing such substances into the office. Furthermore, carrying food to
133
+ the desk is not permitted. Employees are encouraged to use the terrace dining
134
+ facility for lunch, snacks, and dinner. Priya Softweb also emphasizes cleanliness
135
+ and orderliness in the workspace. Employees are responsible for maintaining their
136
+ designated work areas, keeping them clean, organized, and free from unnecessary
137
+ items. Spitting gutka, gum, or tobacco in the washrooms is strictly prohibited.
138
+ These policies contribute to a healthier and more pleasant work environment for
139
+ everyone.
140
+ sentences:
141
+ - Priya Softweb prioritizes the health and wellness of its employees. The company
142
+ strongly prohibits chewing tobacco, gutka, gum, or smoking within the office premises.
143
+ Penalties and harsh decisions from management await anyone found bringing such
144
+ substances into the office. Furthermore, carrying food to the desk is not permitted.
145
+ Employees are encouraged to use the terrace dining facility for lunch, snacks,
146
+ and dinner. Priya Softweb also emphasizes cleanliness and orderliness in the workspace.
147
+ Employees are responsible for maintaining their designated work areas, keeping
148
+ them clean, organized, and free from unnecessary items. Spitting gutka, gum, or
149
+ tobacco in the washrooms is strictly prohibited. These policies contribute to
150
+ a healthier and more pleasant work environment for everyone.
151
+ - The Performance Appraisal at Priya Softweb is solely based on the employee's performance
152
+ evaluation. The evaluation score is compiled by the Team Leader/Project Manager,
153
+ who also gives the final rating to the team member. Detailed recommendations are
154
+ provided by the TL/PM, and increment or promotion is granted accordingly. This
155
+ process ensures that performance is the primary factor driving salary revisions
156
+ and promotions.
157
+ - Priya Softweb actively promotes diversity in its hiring practices. The company
158
+ focuses on recruiting individuals from a wide range of backgrounds, including
159
+ different races, ethnicities, religions, political beliefs, education levels,
160
+ socio-economic backgrounds, geographical locations, languages, and cultures. This
161
+ commitment to diversity enriches the company culture and brings in a variety of
162
+ perspectives and experiences.
163
+ model-index:
164
+ - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
165
+ results:
166
+ - task:
167
+ type: information-retrieval
168
+ name: Information Retrieval
169
+ dataset:
170
+ name: dim 768
171
+ type: dim_768
172
+ metrics:
173
+ - type: cosine_accuracy@1
174
+ value: 1.0
175
+ name: Cosine Accuracy@1
176
+ - type: cosine_accuracy@3
177
+ value: 1.0
178
+ name: Cosine Accuracy@3
179
+ - type: cosine_accuracy@5
180
+ value: 1.0
181
+ name: Cosine Accuracy@5
182
+ - type: cosine_accuracy@10
183
+ value: 1.0
184
+ name: Cosine Accuracy@10
185
+ - type: cosine_precision@1
186
+ value: 1.0
187
+ name: Cosine Precision@1
188
+ - type: cosine_precision@3
189
+ value: 0.33333333333333326
190
+ name: Cosine Precision@3
191
+ - type: cosine_precision@5
192
+ value: 0.20000000000000004
193
+ name: Cosine Precision@5
194
+ - type: cosine_precision@10
195
+ value: 0.10000000000000002
196
+ name: Cosine Precision@10
197
+ - type: cosine_recall@1
198
+ value: 1.0
199
+ name: Cosine Recall@1
200
+ - type: cosine_recall@3
201
+ value: 1.0
202
+ name: Cosine Recall@3
203
+ - type: cosine_recall@5
204
+ value: 1.0
205
+ name: Cosine Recall@5
206
+ - type: cosine_recall@10
207
+ value: 1.0
208
+ name: Cosine Recall@10
209
+ - type: cosine_ndcg@10
210
+ value: 1.0
211
+ name: Cosine Ndcg@10
212
+ - type: cosine_mrr@10
213
+ value: 1.0
214
+ name: Cosine Mrr@10
215
+ - type: cosine_map@100
216
+ value: 1.0
217
+ name: Cosine Map@100
218
+ - task:
219
+ type: information-retrieval
220
+ name: Information Retrieval
221
+ dataset:
222
+ name: dim 512
223
+ type: dim_512
224
+ metrics:
225
+ - type: cosine_accuracy@1
226
+ value: 1.0
227
+ name: Cosine Accuracy@1
228
+ - type: cosine_accuracy@3
229
+ value: 1.0
230
+ name: Cosine Accuracy@3
231
+ - type: cosine_accuracy@5
232
+ value: 1.0
233
+ name: Cosine Accuracy@5
234
+ - type: cosine_accuracy@10
235
+ value: 1.0
236
+ name: Cosine Accuracy@10
237
+ - type: cosine_precision@1
238
+ value: 1.0
239
+ name: Cosine Precision@1
240
+ - type: cosine_precision@3
241
+ value: 0.33333333333333326
242
+ name: Cosine Precision@3
243
+ - type: cosine_precision@5
244
+ value: 0.20000000000000004
245
+ name: Cosine Precision@5
246
+ - type: cosine_precision@10
247
+ value: 0.10000000000000002
248
+ name: Cosine Precision@10
249
+ - type: cosine_recall@1
250
+ value: 1.0
251
+ name: Cosine Recall@1
252
+ - type: cosine_recall@3
253
+ value: 1.0
254
+ name: Cosine Recall@3
255
+ - type: cosine_recall@5
256
+ value: 1.0
257
+ name: Cosine Recall@5
258
+ - type: cosine_recall@10
259
+ value: 1.0
260
+ name: Cosine Recall@10
261
+ - type: cosine_ndcg@10
262
+ value: 1.0
263
+ name: Cosine Ndcg@10
264
+ - type: cosine_mrr@10
265
+ value: 1.0
266
+ name: Cosine Mrr@10
267
+ - type: cosine_map@100
268
+ value: 1.0
269
+ name: Cosine Map@100
270
+ - task:
271
+ type: information-retrieval
272
+ name: Information Retrieval
273
+ dataset:
274
+ name: dim 256
275
+ type: dim_256
276
+ metrics:
277
+ - type: cosine_accuracy@1
278
+ value: 1.0
279
+ name: Cosine Accuracy@1
280
+ - type: cosine_accuracy@3
281
+ value: 1.0
282
+ name: Cosine Accuracy@3
283
+ - type: cosine_accuracy@5
284
+ value: 1.0
285
+ name: Cosine Accuracy@5
286
+ - type: cosine_accuracy@10
287
+ value: 1.0
288
+ name: Cosine Accuracy@10
289
+ - type: cosine_precision@1
290
+ value: 1.0
291
+ name: Cosine Precision@1
292
+ - type: cosine_precision@3
293
+ value: 0.33333333333333326
294
+ name: Cosine Precision@3
295
+ - type: cosine_precision@5
296
+ value: 0.20000000000000004
297
+ name: Cosine Precision@5
298
+ - type: cosine_precision@10
299
+ value: 0.10000000000000002
300
+ name: Cosine Precision@10
301
+ - type: cosine_recall@1
302
+ value: 1.0
303
+ name: Cosine Recall@1
304
+ - type: cosine_recall@3
305
+ value: 1.0
306
+ name: Cosine Recall@3
307
+ - type: cosine_recall@5
308
+ value: 1.0
309
+ name: Cosine Recall@5
310
+ - type: cosine_recall@10
311
+ value: 1.0
312
+ name: Cosine Recall@10
313
+ - type: cosine_ndcg@10
314
+ value: 1.0
315
+ name: Cosine Ndcg@10
316
+ - type: cosine_mrr@10
317
+ value: 1.0
318
+ name: Cosine Mrr@10
319
+ - type: cosine_map@100
320
+ value: 1.0
321
+ name: Cosine Map@100
322
+ - task:
323
+ type: information-retrieval
324
+ name: Information Retrieval
325
+ dataset:
326
+ name: dim 128
327
+ type: dim_128
328
+ metrics:
329
+ - type: cosine_accuracy@1
330
+ value: 1.0
331
+ name: Cosine Accuracy@1
332
+ - type: cosine_accuracy@3
333
+ value: 1.0
334
+ name: Cosine Accuracy@3
335
+ - type: cosine_accuracy@5
336
+ value: 1.0
337
+ name: Cosine Accuracy@5
338
+ - type: cosine_accuracy@10
339
+ value: 1.0
340
+ name: Cosine Accuracy@10
341
+ - type: cosine_precision@1
342
+ value: 1.0
343
+ name: Cosine Precision@1
344
+ - type: cosine_precision@3
345
+ value: 0.33333333333333326
346
+ name: Cosine Precision@3
347
+ - type: cosine_precision@5
348
+ value: 0.20000000000000004
349
+ name: Cosine Precision@5
350
+ - type: cosine_precision@10
351
+ value: 0.10000000000000002
352
+ name: Cosine Precision@10
353
+ - type: cosine_recall@1
354
+ value: 1.0
355
+ name: Cosine Recall@1
356
+ - type: cosine_recall@3
357
+ value: 1.0
358
+ name: Cosine Recall@3
359
+ - type: cosine_recall@5
360
+ value: 1.0
361
+ name: Cosine Recall@5
362
+ - type: cosine_recall@10
363
+ value: 1.0
364
+ name: Cosine Recall@10
365
+ - type: cosine_ndcg@10
366
+ value: 1.0
367
+ name: Cosine Ndcg@10
368
+ - type: cosine_mrr@10
369
+ value: 1.0
370
+ name: Cosine Mrr@10
371
+ - type: cosine_map@100
372
+ value: 1.0
373
+ name: Cosine Map@100
374
+ - task:
375
+ type: information-retrieval
376
+ name: Information Retrieval
377
+ dataset:
378
+ name: dim 64
379
+ type: dim_64
380
+ metrics:
381
+ - type: cosine_accuracy@1
382
+ value: 1.0
383
+ name: Cosine Accuracy@1
384
+ - type: cosine_accuracy@3
385
+ value: 1.0
386
+ name: Cosine Accuracy@3
387
+ - type: cosine_accuracy@5
388
+ value: 1.0
389
+ name: Cosine Accuracy@5
390
+ - type: cosine_accuracy@10
391
+ value: 1.0
392
+ name: Cosine Accuracy@10
393
+ - type: cosine_precision@1
394
+ value: 1.0
395
+ name: Cosine Precision@1
396
+ - type: cosine_precision@3
397
+ value: 0.33333333333333326
398
+ name: Cosine Precision@3
399
+ - type: cosine_precision@5
400
+ value: 0.20000000000000004
401
+ name: Cosine Precision@5
402
+ - type: cosine_precision@10
403
+ value: 0.10000000000000002
404
+ name: Cosine Precision@10
405
+ - type: cosine_recall@1
406
+ value: 1.0
407
+ name: Cosine Recall@1
408
+ - type: cosine_recall@3
409
+ value: 1.0
410
+ name: Cosine Recall@3
411
+ - type: cosine_recall@5
412
+ value: 1.0
413
+ name: Cosine Recall@5
414
+ - type: cosine_recall@10
415
+ value: 1.0
416
+ name: Cosine Recall@10
417
+ - type: cosine_ndcg@10
418
+ value: 1.0
419
+ name: Cosine Ndcg@10
420
+ - type: cosine_mrr@10
421
+ value: 1.0
422
+ name: Cosine Mrr@10
423
+ - type: cosine_map@100
424
+ value: 1.0
425
+ name: Cosine Map@100
426
+ ---
427
+
428
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
429
+
430
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
431
+
432
+ ## Model Details
433
+
434
+ ### Model Description
435
+ - **Model Type:** Sentence Transformer
436
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
437
+ - **Maximum Sequence Length:** 512 tokens
438
+ - **Output Dimensionality:** 768 tokens
439
+ - **Similarity Function:** Cosine Similarity
440
+ <!-- - **Training Dataset:** Unknown -->
441
+ <!-- - **Language:** Unknown -->
442
+ <!-- - **License:** Unknown -->
443
+
444
+ ### Model Sources
445
+
446
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
447
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
448
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
449
+
450
+ ### Full Model Architecture
451
+
452
+ ```
453
+ SentenceTransformer(
454
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
455
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
456
+ (2): Normalize()
457
+ )
458
+ ```
459
+
460
+ ## Usage
461
+
462
+ ### Direct Usage (Sentence Transformers)
463
+
464
+ First install the Sentence Transformers library:
465
+
466
+ ```bash
467
+ pip install -U sentence-transformers
468
+ ```
469
+
470
+ Then you can load this model and run inference.
471
+ ```python
472
+ from sentence_transformers import SentenceTransformer
473
+
474
+ # Download from the 🤗 Hub
475
+ model = SentenceTransformer("kr-manish/fine-tune-embedding-bge-base-HrPolicy_vfinal")
476
+ # Run inference
477
+ sentences = [
478
+ 'Priya Softweb prioritizes the health and wellness of its employees. The company strongly prohibits chewing tobacco, gutka, gum, or smoking within the office premises. Penalties and harsh decisions from management await anyone found bringing such substances into the office. Furthermore, carrying food to the desk is not permitted. Employees are encouraged to use the terrace dining facility for lunch, snacks, and dinner. Priya Softweb also emphasizes cleanliness and orderliness in the workspace. Employees are responsible for maintaining their designated work areas, keeping them clean, organized, and free from unnecessary items. Spitting gutka, gum, or tobacco in the washrooms is strictly prohibited. These policies contribute to a healthier and more pleasant work environment for everyone.',
479
+ 'Priya Softweb prioritizes the health and wellness of its employees. The company strongly prohibits chewing tobacco, gutka, gum, or smoking within the office premises. Penalties and harsh decisions from management await anyone found bringing such substances into the office. Furthermore, carrying food to the desk is not permitted. Employees are encouraged to use the terrace dining facility for lunch, snacks, and dinner. Priya Softweb also emphasizes cleanliness and orderliness in the workspace. Employees are responsible for maintaining their designated work areas, keeping them clean, organized, and free from unnecessary items. Spitting gutka, gum, or tobacco in the washrooms is strictly prohibited. These policies contribute to a healthier and more pleasant work environment for everyone.',
480
+ "The Performance Appraisal at Priya Softweb is solely based on the employee's performance evaluation. The evaluation score is compiled by the Team Leader/Project Manager, who also gives the final rating to the team member. Detailed recommendations are provided by the TL/PM, and increment or promotion is granted accordingly. This process ensures that performance is the primary factor driving salary revisions and promotions.",
481
+ ]
482
+ embeddings = model.encode(sentences)
483
+ print(embeddings.shape)
484
+ # [3, 768]
485
+
486
+ # Get the similarity scores for the embeddings
487
+ similarities = model.similarity(embeddings, embeddings)
488
+ print(similarities.shape)
489
+ # [3, 3]
490
+ ```
491
+
492
+ <!--
493
+ ### Direct Usage (Transformers)
494
+
495
+ <details><summary>Click to see the direct usage in Transformers</summary>
496
+
497
+ </details>
498
+ -->
499
+
500
+ <!--
501
+ ### Downstream Usage (Sentence Transformers)
502
+
503
+ You can finetune this model on your own dataset.
504
+
505
+ <details><summary>Click to expand</summary>
506
+
507
+ </details>
508
+ -->
509
+
510
+ <!--
511
+ ### Out-of-Scope Use
512
+
513
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
514
+ -->
515
+
516
+ ## Evaluation
517
+
518
+ ### Metrics
519
+
520
+ #### Information Retrieval
521
+ * Dataset: `dim_768`
522
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
523
+
524
+ | Metric | Value |
525
+ |:--------------------|:--------|
526
+ | cosine_accuracy@1 | 1.0 |
527
+ | cosine_accuracy@3 | 1.0 |
528
+ | cosine_accuracy@5 | 1.0 |
529
+ | cosine_accuracy@10 | 1.0 |
530
+ | cosine_precision@1 | 1.0 |
531
+ | cosine_precision@3 | 0.3333 |
532
+ | cosine_precision@5 | 0.2 |
533
+ | cosine_precision@10 | 0.1 |
534
+ | cosine_recall@1 | 1.0 |
535
+ | cosine_recall@3 | 1.0 |
536
+ | cosine_recall@5 | 1.0 |
537
+ | cosine_recall@10 | 1.0 |
538
+ | cosine_ndcg@10 | 1.0 |
539
+ | cosine_mrr@10 | 1.0 |
540
+ | **cosine_map@100** | **1.0** |
541
+
542
+ #### Information Retrieval
543
+ * Dataset: `dim_512`
544
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
545
+
546
+ | Metric | Value |
547
+ |:--------------------|:--------|
548
+ | cosine_accuracy@1 | 1.0 |
549
+ | cosine_accuracy@3 | 1.0 |
550
+ | cosine_accuracy@5 | 1.0 |
551
+ | cosine_accuracy@10 | 1.0 |
552
+ | cosine_precision@1 | 1.0 |
553
+ | cosine_precision@3 | 0.3333 |
554
+ | cosine_precision@5 | 0.2 |
555
+ | cosine_precision@10 | 0.1 |
556
+ | cosine_recall@1 | 1.0 |
557
+ | cosine_recall@3 | 1.0 |
558
+ | cosine_recall@5 | 1.0 |
559
+ | cosine_recall@10 | 1.0 |
560
+ | cosine_ndcg@10 | 1.0 |
561
+ | cosine_mrr@10 | 1.0 |
562
+ | **cosine_map@100** | **1.0** |
563
+
564
+ #### Information Retrieval
565
+ * Dataset: `dim_256`
566
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
567
+
568
+ | Metric | Value |
569
+ |:--------------------|:--------|
570
+ | cosine_accuracy@1 | 1.0 |
571
+ | cosine_accuracy@3 | 1.0 |
572
+ | cosine_accuracy@5 | 1.0 |
573
+ | cosine_accuracy@10 | 1.0 |
574
+ | cosine_precision@1 | 1.0 |
575
+ | cosine_precision@3 | 0.3333 |
576
+ | cosine_precision@5 | 0.2 |
577
+ | cosine_precision@10 | 0.1 |
578
+ | cosine_recall@1 | 1.0 |
579
+ | cosine_recall@3 | 1.0 |
580
+ | cosine_recall@5 | 1.0 |
581
+ | cosine_recall@10 | 1.0 |
582
+ | cosine_ndcg@10 | 1.0 |
583
+ | cosine_mrr@10 | 1.0 |
584
+ | **cosine_map@100** | **1.0** |
585
+
586
+ #### Information Retrieval
587
+ * Dataset: `dim_128`
588
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
589
+
590
+ | Metric | Value |
591
+ |:--------------------|:--------|
592
+ | cosine_accuracy@1 | 1.0 |
593
+ | cosine_accuracy@3 | 1.0 |
594
+ | cosine_accuracy@5 | 1.0 |
595
+ | cosine_accuracy@10 | 1.0 |
596
+ | cosine_precision@1 | 1.0 |
597
+ | cosine_precision@3 | 0.3333 |
598
+ | cosine_precision@5 | 0.2 |
599
+ | cosine_precision@10 | 0.1 |
600
+ | cosine_recall@1 | 1.0 |
601
+ | cosine_recall@3 | 1.0 |
602
+ | cosine_recall@5 | 1.0 |
603
+ | cosine_recall@10 | 1.0 |
604
+ | cosine_ndcg@10 | 1.0 |
605
+ | cosine_mrr@10 | 1.0 |
606
+ | **cosine_map@100** | **1.0** |
607
+
608
+ #### Information Retrieval
609
+ * Dataset: `dim_64`
610
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
611
+
612
+ | Metric | Value |
613
+ |:--------------------|:--------|
614
+ | cosine_accuracy@1 | 1.0 |
615
+ | cosine_accuracy@3 | 1.0 |
616
+ | cosine_accuracy@5 | 1.0 |
617
+ | cosine_accuracy@10 | 1.0 |
618
+ | cosine_precision@1 | 1.0 |
619
+ | cosine_precision@3 | 0.3333 |
620
+ | cosine_precision@5 | 0.2 |
621
+ | cosine_precision@10 | 0.1 |
622
+ | cosine_recall@1 | 1.0 |
623
+ | cosine_recall@3 | 1.0 |
624
+ | cosine_recall@5 | 1.0 |
625
+ | cosine_recall@10 | 1.0 |
626
+ | cosine_ndcg@10 | 1.0 |
627
+ | cosine_mrr@10 | 1.0 |
628
+ | **cosine_map@100** | **1.0** |
629
+
630
+ <!--
631
+ ## Bias, Risks and Limitations
632
+
633
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
634
+ -->
635
+
636
+ <!--
637
+ ### Recommendations
638
+
639
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
640
+ -->
641
+
642
+ ## Training Details
643
+
644
+ ### Training Dataset
645
+
646
+ #### Unnamed Dataset
647
+
648
+
649
+ * Size: 160 training samples
650
+ * Columns: <code>positive</code> and <code>anchor</code>
651
+ * Approximate statistics based on the first 1000 samples:
652
+ | | positive | anchor |
653
+ |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
654
+ | type | string | string |
655
+ | details | <ul><li>min: 16 tokens</li><li>mean: 90.76 tokens</li><li>max: 380 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 90.76 tokens</li><li>max: 380 tokens</li></ul> |
656
+ * Samples:
657
+ | positive | anchor |
658
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
659
+ | <code>The general timings for the Marketing team vary: BD works from 1:00 PM to 10:00 PM or 3:00 PM to 12:00 AM, while BA/SEO works from 11:00 AM to 8:00 PM.</code> | <code>The general timings for the Marketing team vary: BD works from 1:00 PM to 10:00 PM or 3:00 PM to 12:00 AM, while BA/SEO works from 11:00 AM to 8:00 PM.</code> |
660
+ | <code>Priya Softweb acknowledges the efforts of employees who work late hours. Employees working more than 11 hours on weekdays are eligible for reimbursement of up to Rs. 250/- for their dinner expenses. However, this reimbursement is subject to approval from their Department Head. This policy recognizes the extra effort put in by employees working extended hours and provides some financial compensation for their meals.</code> | <code>Priya Softweb acknowledges the efforts of employees who work late hours. Employees working more than 11 hours on weekdays are eligible for reimbursement of up to Rs. 250/- for their dinner expenses. However, this reimbursement is subject to approval from their Department Head. This policy recognizes the extra effort put in by employees working extended hours and provides some financial compensation for their meals.</code> |
661
+ | <code>While Priya Softweb allows employees to keep their cell phones during work hours for emergency purposes, excessive personal mobile phone usage and lengthy calls within the office premises are strictly prohibited. Excessive use may result in disciplinary actions. This policy aims to strike a balance between allowing accessibility for emergencies and maintaining a productive work environment free from distractions.</code> | <code>While Priya Softweb allows employees to keep their cell phones during work hours for emergency purposes, excessive personal mobile phone usage and lengthy calls within the office premises are strictly prohibited. Excessive use may result in disciplinary actions. This policy aims to strike a balance between allowing accessibility for emergencies and maintaining a productive work environment free from distractions.</code> |
662
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
663
+ ```json
664
+ {
665
+ "loss": "MultipleNegativesRankingLoss",
666
+ "matryoshka_dims": [
667
+ 768,
668
+ 512,
669
+ 256,
670
+ 128,
671
+ 64
672
+ ],
673
+ "matryoshka_weights": [
674
+ 1,
675
+ 1,
676
+ 1,
677
+ 1,
678
+ 1
679
+ ],
680
+ "n_dims_per_step": -1
681
+ }
682
+ ```
683
+
684
+ ### Training Hyperparameters
685
+ #### Non-Default Hyperparameters
686
+
687
+ - `eval_strategy`: epoch
688
+ - `per_device_train_batch_size`: 16
689
+ - `per_device_eval_batch_size`: 16
690
+ - `gradient_accumulation_steps`: 16
691
+ - `learning_rate`: 3e-05
692
+ - `num_train_epochs`: 15
693
+ - `lr_scheduler_type`: cosine
694
+ - `warmup_ratio`: 0.1
695
+ - `fp16`: True
696
+ - `load_best_model_at_end`: True
697
+ - `optim`: adamw_torch_fused
698
+
699
+ #### All Hyperparameters
700
+ <details><summary>Click to expand</summary>
701
+
702
+ - `overwrite_output_dir`: False
703
+ - `do_predict`: False
704
+ - `eval_strategy`: epoch
705
+ - `prediction_loss_only`: True
706
+ - `per_device_train_batch_size`: 16
707
+ - `per_device_eval_batch_size`: 16
708
+ - `per_gpu_train_batch_size`: None
709
+ - `per_gpu_eval_batch_size`: None
710
+ - `gradient_accumulation_steps`: 16
711
+ - `eval_accumulation_steps`: None
712
+ - `learning_rate`: 3e-05
713
+ - `weight_decay`: 0.0
714
+ - `adam_beta1`: 0.9
715
+ - `adam_beta2`: 0.999
716
+ - `adam_epsilon`: 1e-08
717
+ - `max_grad_norm`: 1.0
718
+ - `num_train_epochs`: 15
719
+ - `max_steps`: -1
720
+ - `lr_scheduler_type`: cosine
721
+ - `lr_scheduler_kwargs`: {}
722
+ - `warmup_ratio`: 0.1
723
+ - `warmup_steps`: 0
724
+ - `log_level`: passive
725
+ - `log_level_replica`: warning
726
+ - `log_on_each_node`: True
727
+ - `logging_nan_inf_filter`: True
728
+ - `save_safetensors`: True
729
+ - `save_on_each_node`: False
730
+ - `save_only_model`: False
731
+ - `restore_callback_states_from_checkpoint`: False
732
+ - `no_cuda`: False
733
+ - `use_cpu`: False
734
+ - `use_mps_device`: False
735
+ - `seed`: 42
736
+ - `data_seed`: None
737
+ - `jit_mode_eval`: False
738
+ - `use_ipex`: False
739
+ - `bf16`: False
740
+ - `fp16`: True
741
+ - `fp16_opt_level`: O1
742
+ - `half_precision_backend`: auto
743
+ - `bf16_full_eval`: False
744
+ - `fp16_full_eval`: False
745
+ - `tf32`: None
746
+ - `local_rank`: 0
747
+ - `ddp_backend`: None
748
+ - `tpu_num_cores`: None
749
+ - `tpu_metrics_debug`: False
750
+ - `debug`: []
751
+ - `dataloader_drop_last`: False
752
+ - `dataloader_num_workers`: 0
753
+ - `dataloader_prefetch_factor`: None
754
+ - `past_index`: -1
755
+ - `disable_tqdm`: False
756
+ - `remove_unused_columns`: True
757
+ - `label_names`: None
758
+ - `load_best_model_at_end`: True
759
+ - `ignore_data_skip`: False
760
+ - `fsdp`: []
761
+ - `fsdp_min_num_params`: 0
762
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
763
+ - `fsdp_transformer_layer_cls_to_wrap`: None
764
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
765
+ - `deepspeed`: None
766
+ - `label_smoothing_factor`: 0.0
767
+ - `optim`: adamw_torch_fused
768
+ - `optim_args`: None
769
+ - `adafactor`: False
770
+ - `group_by_length`: False
771
+ - `length_column_name`: length
772
+ - `ddp_find_unused_parameters`: None
773
+ - `ddp_bucket_cap_mb`: None
774
+ - `ddp_broadcast_buffers`: False
775
+ - `dataloader_pin_memory`: True
776
+ - `dataloader_persistent_workers`: False
777
+ - `skip_memory_metrics`: True
778
+ - `use_legacy_prediction_loop`: False
779
+ - `push_to_hub`: False
780
+ - `resume_from_checkpoint`: None
781
+ - `hub_model_id`: None
782
+ - `hub_strategy`: every_save
783
+ - `hub_private_repo`: False
784
+ - `hub_always_push`: False
785
+ - `gradient_checkpointing`: False
786
+ - `gradient_checkpointing_kwargs`: None
787
+ - `include_inputs_for_metrics`: False
788
+ - `eval_do_concat_batches`: True
789
+ - `fp16_backend`: auto
790
+ - `push_to_hub_model_id`: None
791
+ - `push_to_hub_organization`: None
792
+ - `mp_parameters`:
793
+ - `auto_find_batch_size`: False
794
+ - `full_determinism`: False
795
+ - `torchdynamo`: None
796
+ - `ray_scope`: last
797
+ - `ddp_timeout`: 1800
798
+ - `torch_compile`: False
799
+ - `torch_compile_backend`: None
800
+ - `torch_compile_mode`: None
801
+ - `dispatch_batches`: None
802
+ - `split_batches`: None
803
+ - `include_tokens_per_second`: False
804
+ - `include_num_input_tokens_seen`: False
805
+ - `neftune_noise_alpha`: None
806
+ - `optim_target_modules`: None
807
+ - `batch_eval_metrics`: False
808
+ - `batch_sampler`: batch_sampler
809
+ - `multi_dataset_batch_sampler`: proportional
810
+
811
+ </details>
812
+
813
+ ### Training Logs
814
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
815
+ |:-------:|:-----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
816
+ | 0 | 0 | - | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
817
+ | **1.0** | **1** | **-** | **1.0** | **1.0** | **1.0** | **1.0** | **1.0** |
818
+ | 2.0 | 3 | - | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
819
+ | 3.0 | 4 | - | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
820
+ | 4.0 | 6 | - | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
821
+ | 5.0 | 8 | - | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
822
+ | 6.0 | 9 | - | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
823
+ | 6.4 | 10 | 0.0767 | - | - | - | - | - |
824
+ | 7.0 | 11 | - | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
825
+ | 8.0 | 12 | - | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
826
+ | 9.0 | 13 | - | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
827
+ | 10.0 | 15 | - | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
828
+
829
+ * The bold row denotes the saved checkpoint.
830
+
831
+ ### Framework Versions
832
+ - Python: 3.10.12
833
+ - Sentence Transformers: 3.0.1
834
+ - Transformers: 4.41.2
835
+ - PyTorch: 2.1.2+cu121
836
+ - Accelerate: 0.32.1
837
+ - Datasets: 2.19.1
838
+ - Tokenizers: 0.19.1
839
+
840
+ ## Citation
841
+
842
+ ### BibTeX
843
+
844
+ #### Sentence Transformers
845
+ ```bibtex
846
+ @inproceedings{reimers-2019-sentence-bert,
847
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
848
+ author = "Reimers, Nils and Gurevych, Iryna",
849
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
850
+ month = "11",
851
+ year = "2019",
852
+ publisher = "Association for Computational Linguistics",
853
+ url = "https://arxiv.org/abs/1908.10084",
854
+ }
855
+ ```
856
+
857
+ #### MatryoshkaLoss
858
+ ```bibtex
859
+ @misc{kusupati2024matryoshka,
860
+ title={Matryoshka Representation Learning},
861
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
862
+ year={2024},
863
+ eprint={2205.13147},
864
+ archivePrefix={arXiv},
865
+ primaryClass={cs.LG}
866
+ }
867
+ ```
868
+
869
+ #### MultipleNegativesRankingLoss
870
+ ```bibtex
871
+ @misc{henderson2017efficient,
872
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
873
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
874
+ year={2017},
875
+ eprint={1705.00652},
876
+ archivePrefix={arXiv},
877
+ primaryClass={cs.CL}
878
+ }
879
+ ```
880
+
881
+ <!--
882
+ ## Glossary
883
+
884
+ *Clearly define terms in order to be accessible across audiences.*
885
+ -->
886
+
887
+ <!--
888
+ ## Model Card Authors
889
+
890
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
891
+ -->
892
+
893
+ <!--
894
+ ## Model Card Contact
895
+
896
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
897
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d4db737f56aaea90796b5a8d219de0eee958295a575c611f6b417ad340151da
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff