{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5a57d96cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5a57d96d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5a57d96dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5a57d96e60>", "_build": "<function ActorCriticPolicy._build at 0x7f5a57d96ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5a57d96f80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5a57d97010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5a57d970a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5a57d97130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5a57d971c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5a57d97250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5a57d972e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5a57d8f240>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 100352, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685178851249179487, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAPNyhD2csEi8y5FuuwBvTTzA98A9iUAwvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVEQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCKS5Etuk1yMAWyUS66MAXSUR0B6kl0DEFW5dX2UKGgGR0Awma5PM0P6aAdLtmgIR0B6lntnf2sadX2UKGgGR0A/S7HQyAQQaAdLrWgIR0B6nNxNqQA/dX2UKGgGR0Aj6qFyq+8HaAdNCgFoCEdAeqMhd+ocaXV9lChoBkdAT7Ij8k2P1mgHS5loCEdAeqalt0mtyXV9lChoBkdAXwtjG1hLG2gHTegDaAhHQHrASBGx2St1fZQoaAZHwDCCveP7vXtoB0uzaAhHQHrETRtxdY51fZQoaAZHQGDRXzcynDRoB03oA2gIR0B63V+BpYcOdX2UKGgGR8Aa5+9alk6LaAdLu2gIR0B64YgfU4JedX2UKGgGR0A4HW9US7GvaAdLyGgIR0B65fjR2KVIdX2UKGgGR0BHNiFsYVIqaAdN6ANoCEdAewBco6S1V3V9lChoBkfAYkaUJv5xi2gHTQABaAhHQHsK3iBGx2V1fZQoaAZHwESpqkdmxt5oB0u/aAhHQHsQuZLIxQB1fZQoaAZHwCR934bjtHBoB0v4aAhHQHsX2V/tpmF1fZQoaAZHQFA64G2TgVJoB03oA2gIR0B7PiVcD8tPdX2UKGgGR0BEGxM36yjYaAdLtmgIR0B7RGL74zrNdX2UKGgGR0AOdMPBi1AraAdL5GgIR0B7StzCDVYqdX2UKGgGR0AxEDw6QvHtaAdLlGgIR0B7UKhL5AQhdX2UKGgGR0BfGgtOEdvLaAdN6ANoCEdAe2no11nuiXV9lChoBkfAN1ziGWUr1GgHS8hoCEdAe2541xbSqnV9lChoBkdAVSv101ZTymgHTegDaAhHQHuIM/D+BH11fZQoaAZHQFdwCvX9R79oB03oA2gIR0B7oqTs6aLGdX2UKGgGR0AfBqagElmfaAdLsmgIR0B7pqOq//NrdX2UKGgGR0AyIXizcAR1aAdN6ANoCEdAe8BwCKaXr3V9lChoBkdAOdNjslb/wWgHTQMBaAhHQHvGWM4tHx11fZQoaAZHQAMP+4smOVBoB0u8aAhHQHvKsySFGod1fZQoaAZHwGOzZeRgZ0loB0vaaAhHQHvSTHCGetl1fZQoaAZHQDGCBXjlxOtoB03oA2gIR0B77TkNnXd1dX2UKGgGR8A3q1WbPQfIaAdLz2gIR0B783y9VWCFdX2UKGgGR8A5g0AcT8HfaAdL82gIR0B7+syzollcdX2UKGgGR0AxWXko4MnaaAdLxGgIR0B8AHF1jiGWdX2UKGgGR0AlT0oScslLaAdL1mgIR0B8BvJ+2E00dX2UKGgGR0BGLZYxL0z1aAdLr2gIR0B8EEURFqi5dX2UKGgGR8Acb5xiobXIaAdN6ANoCEdAfDWv9LpRoHV9lChoBkdAWQQRJ2+wkmgHTegDaAhHQHxMo9LYf4h1fZQoaAZHwDyoIPbwjMVoB0u/aAhHQHxTe+M6zVt1fZQoaAZHQFHKOv+wTuhoB0u3aAhHQHxXq+36Q/51fZQoaAZHv/1YVqN6w+toB0v/aAhHQHxdestCiRJ1fZQoaAZHQDIysny/bj9oB0vIaAhHQHxiCDh99c91fZQoaAZHQEIXpXZGrjpoB03oA2gIR0B8e8KneiztdX2UKGgGR0AtBzRx95QhaAdL1mgIR0B8gLNB4UvgdX2UKGgGR0BWXI1gpjMFaAdN6ANoCEdAfJpM23rleXV9lChoBkdAVsMb2lEZzmgHTegDaAhHQHyzvnKW9lF1fZQoaAZHQEO1itJWeYloB0uWaAhHQHy5kzTF2mp1fZQoaAZHQEpI6GQCCBhoB0vBaAhHQHy96Ss8xKx1fZQoaAZHQCng287IT5BoB0usaAhHQHzBwoPTXrd1fZQoaAZHQFiPUr08NhFoB03oA2gIR0B83jeP7vXtdX2UKGgGR8Bn+QBvJiiJaAdL82gIR0B85al7+kxidX2UKGgGR8A+9hStNi6QaAdNEQFoCEdAfO4tcfNiY3V9lChoBkdAXMzMgU1yemgHTegDaAhHQH0UQFotcwB1fZQoaAZHQEU4K0D2alVoB03oA2gIR0B9MbzbvgFYdX2UKGgGR8AchYjjaPCEaAdNGwFoCEdAfTqInjQzDXV9lChoBkfATBcIzFdcB2gHS+1oCEdAfT/2K2rn1XV9lChoBkdAaZzQgs9SuWgHTf0BaAhHQH1LuJ53Tux1fZQoaAZHQBWI8dPtUn5oB0vTaAhHQH1SpRjz7Mx1fZQoaAZHQGCE3z19ORFoB03oA2gIR0B9bFPnB+F2dX2UKGgGR0Bbn/ra/RE4aAdN6ANoCEdAfYX7fHggo3V9lChoBkdANaar3j+72GgHTegDaAhHQH2fjWoWHk91fZQoaAZHwGQ3K0tyxRloB00dAWgIR0B9pe0mdAgQdX2UKGgGR8BgmlJlJ6IFaAdNGQFoCEdAfaxG1QZXMnV9lChoBkdAXfJdszl90GgHTegDaAhHQH3IcBhhH9Z1fZQoaAZHQESttVrAP/doB03oA2gIR0B97DTqjaf0dX2UKGgGR0A6hvvSc9W7aAdN6ANoCEdAfhA7Z39rGnV9lChoBkfAOEDXWe6I32gHTegDaAhHQH4p7TYukDZ1fZQoaAZHwEepxOLzf79oB0v7aAhHQH4vum78Nx51fZQoaAZHQFQAv8IiTt9oB03oA2gIR0B+ST5zo2XLdX2UKGgGR0BG/MPjGT9saAdN6ANoCEdAfmIpaRp1zXV9lChoBkfAYUTtCRfWtmgHTUgCaAhHQH5yANgBtDV1fZQoaAZHwGHMKx1PnCBoB0vIaAhHQH52d/OMVDd1fZQoaAZHwEVx4L1EmY1oB0vaaAhHQH57aDK5kLB1fZQoaAZHwFZlzHCGetloB034AWgIR0B+iVooNNJwdX2UKGgGR0BBLcXm/336aAdL42gIR0B+jol6Z6UrdX2UKGgGR0BYGQ9FF2FGaAdN6ANoCEdAfqf7wazeGnV9lChoBkdAWAC9US7GvWgHTegDaAhHQH7JY4uK4x11fZQoaAZHQC6U8V58jRloB0vSaAhHQH7Qhy0a6z51fZQoaAZHQDqRxNqQA+9oB0uvaAhHQH7WlW0Z3s51fZQoaAZHQFI9+SbH6uZoB03oA2gIR0B++7RJEpiJdX2UKGgGR8BntLewcHW0aAdLxmgIR0B/ACH31zySdX2UKGgGR8BK1ol2NedDaAdLh2gIR0B/AzMC9ytFdX2UKGgGR0BAzJNTLns+aAdLumgIR0B/Cc1EVnEmdX2UKGgGR0BIlAv114gSaAdLw2gIR0B/Dit3fQ8fdX2UKGgGR0BffyZBsyi3aAdN6ANoCEdAfyfPzWf9P3V9lChoBkdAXVDqkdmxuGgHTegDaAhHQH9B04BFNL11fZQoaAZHwCCaptJnQIFoB0uIaAhHQH9E+WGATZh1fZQoaAZHQEFjtIClrM1oB0uzaAhHQH9JESRKYiR1fZQoaAZHP/exZdOZb6hoB0ujaAhHQH9NCsS00Fd1fZQoaAZHQGNBNdRiw0RoB03oA2gIR0B/Zp4bCJoCdX2UKGgGRz/f72+PBBRiaAdLu2gIR0B/auicoYvWdX2UKGgGR0Bglg6wMYuTaAdN6ANoCEdAf4R4vN/vv3V9lChoBkdAMnyq+8Gs3mgHTegDaAhHQH+gYZMtbs51fZQoaAZHQF1ESm65Gz9oB03oA2gIR0B/xErSVnmJdX2UKGgGR0Bi6lV7x/d7aAdN6ANoCEdAf+e9ECvHLnV9lChoBkdAJt7DEWIoE2gHS7poCEdAf+5J1aGHpXV9lChoBkfAI4QKBun/DWgHS9ZoCEdAf/MTnaFmF3V9lChoBkdANNeMIeHSGGgHS6poCEdAf/bNG3F1jnV9lChoBkdAVMnrkbPyCmgHTegDaAhHQIAIVNlAeJZ1fZQoaAZHQDzx2Pkq+aloB0vPaAhHQIAKtadMCcR1fZQoaAZHQFwUbe/Ho5hoB03oA2gIR0CAF2uoxYaHdX2UKGgGR0BHtVe8f3evaAdN6ANoCEdAgCQ89GI9DHV9lChoBkfAPCRSxZ+x4mgHS+RoCEdAgCbgggX/HnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 980, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.985, "ent_coef": 0.04, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |