End of training
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Wer
|
24 |
type: wer
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_13_0 dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 1.
|
36 |
-
- Wer: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -61,16 +61,60 @@ The following hyperparameters were used during training:
|
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_steps: 500
|
64 |
-
- num_epochs:
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
-
| Training Loss | Epoch
|
69 |
-
|
70 |
-
| 20.
|
71 |
-
| 4.
|
72 |
-
| 1.
|
73 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
|
76 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Wer
|
24 |
type: wer
|
25 |
+
value: 0.5931520644511581
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_13_0 dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.4687
|
36 |
+
- Wer: 0.5932
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_steps: 500
|
64 |
+
- num_epochs: 300
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
69 |
+
|:-------------:|:------:|:-----:|:---------------:|:------:|
|
70 |
+
| 20.8922 | 6.25 | 400 | 4.6827 | 0.9990 |
|
71 |
+
| 4.0513 | 12.5 | 800 | 2.3657 | 0.9204 |
|
72 |
+
| 1.5386 | 18.75 | 1200 | 1.2355 | 0.7392 |
|
73 |
+
| 0.7429 | 25.0 | 1600 | 1.1179 | 0.6636 |
|
74 |
+
| 0.3746 | 31.25 | 2000 | 1.0465 | 0.6314 |
|
75 |
+
| 0.2407 | 37.5 | 2400 | 1.1492 | 0.6596 |
|
76 |
+
| 0.1966 | 43.75 | 2800 | 1.1291 | 0.6344 |
|
77 |
+
| 0.1697 | 50.0 | 3200 | 1.1897 | 0.6395 |
|
78 |
+
| 0.1533 | 56.25 | 3600 | 1.2202 | 0.6193 |
|
79 |
+
| 0.129 | 62.5 | 4000 | 1.2106 | 0.6516 |
|
80 |
+
| 0.1097 | 68.75 | 4400 | 1.1662 | 0.6254 |
|
81 |
+
| 0.102 | 75.0 | 4800 | 1.2086 | 0.6133 |
|
82 |
+
| 0.0918 | 81.25 | 5200 | 1.2295 | 0.6485 |
|
83 |
+
| 0.0806 | 87.5 | 5600 | 1.2861 | 0.6123 |
|
84 |
+
| 0.0738 | 93.75 | 6000 | 1.2436 | 0.6093 |
|
85 |
+
| 0.0697 | 100.0 | 6400 | 1.3496 | 0.6626 |
|
86 |
+
| 0.0667 | 106.25 | 6800 | 1.2364 | 0.6133 |
|
87 |
+
| 0.0591 | 112.5 | 7200 | 1.2689 | 0.6062 |
|
88 |
+
| 0.054 | 118.75 | 7600 | 1.2886 | 0.6183 |
|
89 |
+
| 0.0523 | 125.0 | 8000 | 1.3328 | 0.6445 |
|
90 |
+
| 0.0542 | 131.25 | 8400 | 1.4019 | 0.6133 |
|
91 |
+
| 0.045 | 137.5 | 8800 | 1.3426 | 0.6042 |
|
92 |
+
| 0.0425 | 143.75 | 9200 | 1.3042 | 0.6032 |
|
93 |
+
| 0.0378 | 150.0 | 9600 | 1.3638 | 0.6224 |
|
94 |
+
| 0.0354 | 156.25 | 10000 | 1.3397 | 0.6294 |
|
95 |
+
| 0.0282 | 162.5 | 10400 | 1.3939 | 0.6173 |
|
96 |
+
| 0.0288 | 168.75 | 10800 | 1.3674 | 0.6475 |
|
97 |
+
| 0.0278 | 175.0 | 11200 | 1.3636 | 0.6324 |
|
98 |
+
| 0.0239 | 181.25 | 11600 | 1.4101 | 0.6405 |
|
99 |
+
| 0.0238 | 187.5 | 12000 | 1.4528 | 0.6163 |
|
100 |
+
| 0.0214 | 193.75 | 12400 | 1.4458 | 0.6093 |
|
101 |
+
| 0.0194 | 200.0 | 12800 | 1.3920 | 0.6304 |
|
102 |
+
| 0.0168 | 206.25 | 13200 | 1.4277 | 0.6193 |
|
103 |
+
| 0.0168 | 212.5 | 13600 | 1.3959 | 0.6203 |
|
104 |
+
| 0.0154 | 218.75 | 14000 | 1.4043 | 0.6133 |
|
105 |
+
| 0.0144 | 225.0 | 14400 | 1.4508 | 0.6193 |
|
106 |
+
| 0.0134 | 231.25 | 14800 | 1.4309 | 0.6224 |
|
107 |
+
| 0.0109 | 237.5 | 15200 | 1.4301 | 0.6123 |
|
108 |
+
| 0.0107 | 243.75 | 15600 | 1.4373 | 0.6002 |
|
109 |
+
| 0.0098 | 250.0 | 16000 | 1.4147 | 0.6113 |
|
110 |
+
| 0.0095 | 256.25 | 16400 | 1.4585 | 0.6193 |
|
111 |
+
| 0.009 | 262.5 | 16800 | 1.4424 | 0.6203 |
|
112 |
+
| 0.0079 | 268.75 | 17200 | 1.5019 | 0.6193 |
|
113 |
+
| 0.0066 | 275.0 | 17600 | 1.4835 | 0.5932 |
|
114 |
+
| 0.0059 | 281.25 | 18000 | 1.4749 | 0.5992 |
|
115 |
+
| 0.0057 | 287.5 | 18400 | 1.4897 | 0.6002 |
|
116 |
+
| 0.0053 | 293.75 | 18800 | 1.4667 | 0.5901 |
|
117 |
+
| 0.0048 | 300.0 | 19200 | 1.4687 | 0.5932 |
|
118 |
|
119 |
|
120 |
### Framework versions
|