--- license: mit base_model: microsoft/biogpt tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: MLMA-Lab8-FinetunedBioGPT-Custom results: [] --- # MLMA-Lab8-FinetunedBioGPT-Custom This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0648 - Precision: 0.7018 - Recall: 0.8301 - F1: 0.7605 - Accuracy: 0.9752 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2223 | 1.0 | 665 | 0.1261 | 0.5357 | 0.6135 | 0.5719 | 0.9529 | | 0.1479 | 2.0 | 1330 | 0.0855 | 0.6373 | 0.7977 | 0.7085 | 0.9687 | | 0.111 | 3.0 | 1995 | 0.0648 | 0.7018 | 0.8301 | 0.7605 | 0.9752 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2