first commit
Browse files- README.md +109 -0
- added_tokens.json +7 -0
- config.json +30 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +15 -0
- spm.model +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- ja
|
6 |
+
programming_language:
|
7 |
+
- C
|
8 |
+
- C++
|
9 |
+
- C#
|
10 |
+
- Go
|
11 |
+
- Java
|
12 |
+
- JavaScript
|
13 |
+
- Lua
|
14 |
+
- PHP
|
15 |
+
- Python
|
16 |
+
- Ruby
|
17 |
+
- Rust
|
18 |
+
- Scala
|
19 |
+
- TypeScript
|
20 |
+
library_name: transformers
|
21 |
+
tags:
|
22 |
+
- deberta
|
23 |
+
- deberta-v3
|
24 |
+
- fill-mask
|
25 |
+
datasets:
|
26 |
+
- wikipedia
|
27 |
+
- EleutherAI/pile
|
28 |
+
- bigcode/the-stack
|
29 |
+
- mc4
|
30 |
+
metrics:
|
31 |
+
- accuracy
|
32 |
+
mask_token: "[MASK]"
|
33 |
+
widget:
|
34 |
+
- text: "京都大学で自然言語処理を[MASK]する。"
|
35 |
+
---
|
36 |
+
|
37 |
+
# Model Card for Japanese DeBERTa V2 base
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
This is a Japanese DeBERTa V3 base model pre-trained on LLM-jp corpus v1.0.
|
42 |
+
|
43 |
+
## How to use
|
44 |
+
|
45 |
+
You can use this model for masked language modeling as follows:
|
46 |
+
|
47 |
+
```python
|
48 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained('ku-nlp/deberta-v2-base-japanese')
|
50 |
+
model = AutoModelForMaskedLM.from_pretrained('ku-nlp/deberta-v2-base-japanese')
|
51 |
+
|
52 |
+
sentences = [
|
53 |
+
"京都大学で自然言語処理を[MASK]する。",
|
54 |
+
"I [MASK] NLP at Kyoto University.",
|
55 |
+
'int main() { printf("Hello, [MASK]!"); return 0; }',
|
56 |
+
]
|
57 |
+
encodings = tokenizer(sentences, return_tensors='pt')
|
58 |
+
...
|
59 |
+
```
|
60 |
+
|
61 |
+
You can also fine-tune this model on downstream tasks.
|
62 |
+
|
63 |
+
## Tokenization
|
64 |
+
|
65 |
+
The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model.
|
66 |
+
The vocabulary entries were converted from [`llm-jp-tokenizer v2.2 (100k)`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v2.2).
|
67 |
+
Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp/llm-ja-tokenizer` for details on the vocabulary construction procedure.
|
68 |
+
|
69 |
+
Note that unlike [ku-nlp/deberta-v2-base-japanese](https://huggingface.co/ku-nlp/deberta-v2-base-japanese), pre-segmentation by a morphological analyzer (e.g., Juman++) is no longer required for this model.
|
70 |
+
|
71 |
+
## Training data
|
72 |
+
|
73 |
+
We used the [LLM-jp corpus](https://github.com/llm-jp/llm-jp-corpus) v1.0.1 for pre-training.
|
74 |
+
The corpus consists of the following corpora:
|
75 |
+
|
76 |
+
- Japanese
|
77 |
+
- Wikipedia (1B tokens)
|
78 |
+
- mC4 (129B tokens)
|
79 |
+
- English
|
80 |
+
- Wikipedia (4B tokens)
|
81 |
+
- The Pile (126B tokens)
|
82 |
+
- Code
|
83 |
+
- The Stack (10B tokens)
|
84 |
+
|
85 |
+
We shuffled the corpora, which has 270B tokens in total, and trained the model for 2 epochs.
|
86 |
+
Thus, the total number of tokens fed to the model was 540B.
|
87 |
+
|
88 |
+
## Training procedure
|
89 |
+
|
90 |
+
We slightly modified [the official implementation of DeBERTa V3](https://github.com/microsoft/DeBERTa) and followed the official training procedure.
|
91 |
+
The modified code is available at [nobu-g/DeBERTa](https://github.com/nobu-g/DeBERTa).
|
92 |
+
|
93 |
+
The following hyperparameters were used during pre-training:
|
94 |
+
|
95 |
+
- learning_rate: 1e-4
|
96 |
+
- per_device_train_batch_size: 800
|
97 |
+
- num_devices: 8
|
98 |
+
- gradient_accumulation_steps: 3
|
99 |
+
- total_train_batch_size: 2400
|
100 |
+
- max_seq_length: 512
|
101 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
|
102 |
+
- lr_scheduler_type: linear schedule with warmup
|
103 |
+
- training_steps: 475,000
|
104 |
+
- warmup_steps: 10,000
|
105 |
+
|
106 |
+
## Acknowledgments
|
107 |
+
|
108 |
+
This work was supported by Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures (JHPCN) through General Collaboration Project no. jh221004, "Developing a Platform for Constructing and Sharing of Large-Scale Japanese Language Models".
|
109 |
+
For training models, we used the mdx: a platform for the data-driven future.
|
added_tokens.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[CLS]": 96871,
|
3 |
+
"[MASK]": 96867,
|
4 |
+
"[PAD]": 96869,
|
5 |
+
"[SEP]": 96868,
|
6 |
+
"[UNK]": 96870
|
7 |
+
}
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_probs_dropout_prob": 0.1,
|
3 |
+
"hidden_act": "gelu",
|
4 |
+
"hidden_dropout_prob": 0.1,
|
5 |
+
"hidden_size": 768,
|
6 |
+
"initializer_range": 0.02,
|
7 |
+
"intermediate_size": 3072,
|
8 |
+
"layer_norm_eps": 1e-07,
|
9 |
+
"max_position_embeddings": 512,
|
10 |
+
"max_relative_positions": -1,
|
11 |
+
"norm_rel_ebd": "layer_norm",
|
12 |
+
"model_type": "deberta-v2",
|
13 |
+
"num_attention_heads": 12,
|
14 |
+
"num_hidden_layers": 12,
|
15 |
+
"pad_token_id": 0,
|
16 |
+
"pooler_dropout": 0,
|
17 |
+
"pooler_hidden_act": "gelu",
|
18 |
+
"pooler_hidden_size": 768,
|
19 |
+
"pos_att_type": [
|
20 |
+
"p2c",
|
21 |
+
"c2p"
|
22 |
+
],
|
23 |
+
"position_biased_input": false,
|
24 |
+
"position_buckets": 256,
|
25 |
+
"relative_attention": true,
|
26 |
+
"share_att_key": true,
|
27 |
+
"transformers_version": "4.37.2",
|
28 |
+
"type_vocab_size": 0,
|
29 |
+
"vocab_size": 96900
|
30 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfe7489b46b879cee9f6d35ec6d6a13f15e49f7e1cb41ee5cfa8e45501259e44
|
3 |
+
size 471366482
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": {
|
9 |
+
"content": "[UNK]",
|
10 |
+
"lstrip": false,
|
11 |
+
"normalized": true,
|
12 |
+
"rstrip": false,
|
13 |
+
"single_word": false
|
14 |
+
}
|
15 |
+
}
|
spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fefde905766244f5e613a490d6e35236043d6483c4aae0eaac4b4a8fc365a88
|
3 |
+
size 1658609
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"96867": {
|
4 |
+
"content": "[MASK]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"96868": {
|
12 |
+
"content": "[SEP]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"96869": {
|
20 |
+
"content": "[PAD]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"96870": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"96871": {
|
36 |
+
"content": "[CLS]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_lower_case": false,
|
48 |
+
"eos_token": "[SEP]",
|
49 |
+
"keep_accents": true,
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"model_max_length": 1000000000000000019884624838656,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"sp_model_kwargs": {},
|
55 |
+
"split_by_punct": false,
|
56 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|