--- library_name: peft license: gemma base_model: google/gemma-2-27b-it tags: - axolotl - generated_from_trainer model-index: - name: gemma-2-27b-it-dolly-15k results: [] datasets: - databricks/databricks-dolly-15k pipeline_tag: text-generation --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.2` ```yaml base_model: google/gemma-2-27b-it hub_model_id: kweinmeister/gemma-2-27b-it-dolly-15k load_in_8bit: false load_in_4bit: true strict: false datasets: - path: databricks/databricks-dolly-15k type: field_instruction: instruction field_input: context field_output: response val_set_size: 0.05 sequence_len: 2048 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true adapter: qlora lora_model_dir: lora_r: 32 lora_alpha: 64 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: gemma-2-27b-it-dolly-15k wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 4 num_epochs: 1 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.0001 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: false warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero2.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: output_dir: "/mnt/disks/gcs/training/runs/google--gemma-2-27b-it-20250101-192231/out/" dataset_prepared_path: "/mnt/disks/gcs/training/datasets" ```

# gemma-2-27b-it-dolly-15k This model is a fine-tuned version of [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5560 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.2291 | 0.0244 | 1 | 2.1246 | | 2.1928 | 0.2683 | 11 | 1.6858 | | 1.742 | 0.5366 | 22 | 1.5769 | | 1.7213 | 0.8049 | 33 | 1.5560 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.4.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3