--- language: - en thumbnail: "https://staticassetbucket.s3.us-west-1.amazonaws.com/avatar_grid.png" tags: - dreambooth - stable-diffusion - stable-diffusion-diffusers - text-to-image --- # Dreambooth style: Avatar __Dreambooth finetuning of Stable Diffusion (v1.5.1) on Avatar art style by [Lambda Labs](https://lambdalabs.com/).__ ## About Put in a text prompt and generate your own Avatar style image! If you want to find out how to train your own Dreambooth Style, see this example (link lambda blog) // ![pk1.jpg](https://staticassetbucket.s3.us-west-1.amazonaws.com/avatar_grid.png) > descriptions? ## Usage To run model locally: ```bash pip install accelerate torchvision transformers>=4.21.0 ftfy tensorboard modelcards ``` ```python import torch from diffusers import StableDiffusionPipeline from torch import autocast pipe = StableDiffusionPipeline.from_pretrained("lambdalabs/dreambooth-avatar", torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "Yoda, avatarart style person" scale = 7.5 n_samples = 4 # Sometimes the nsfw checker is confused by the Naruto images, you can disable # it at your own risk here disable_safety = False if disable_safety: def null_safety(images, **kwargs): return images, False pipe.safety_checker = null_safety with autocast("cuda"): images = pipe(n_samples*[prompt], guidance_scale=scale).images for idx, im in enumerate(images): im.save(f"{idx:06}.png") ``` ## Model description Trained on 512x512 Avatar character images using 2xA6000 GPUs on [Lambda GPU Cloud](https://lambdalabs.com/service/gpu-cloud) for around 30,000 step (about 1 hours, at a cost of about $2). ## Links - [Lambda Diffusers](https://github.com/LambdaLabsML/lambda-diffusers) - [Model weights in Diffusers format](https://huggingface.co/lambdalabs/sd-naruto-diffusers) - [Naruto diffusers repo](https://github.com/eolecvk/naruto-sd) Trained by Eole Cervenka