Text-to-Image
Diffusers
lora
patrickvonplaten commited on
Commit
b7cca8c
·
1 Parent(s): 23c96ee
Files changed (1) hide show
  1. README.md +65 -13
README.md CHANGED
@@ -1,28 +1,80 @@
1
  ---
2
- library_name: peft
 
3
  tags:
4
  - lora
 
 
5
  ---
6
 
7
- ```py
8
- from diffusers import LCMScheduler, StableDiffusionXLPipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  import torch
 
 
 
 
10
 
11
- pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
12
  pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
 
13
 
14
  # load and fuse lcm lora
15
- pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
16
  pipe.fuse_lora()
17
 
18
- # NOTE, you can also optionally load other LoRAs into the model
19
- pipe.load_lora_weights("TheLastBen/Papercut_SDXL")
20
 
21
- pipe.to(device="cuda")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
- prompt = "papercut a fox" # you can replace 'a fox' by other objects, scenes
24
 
25
- torch.manual_seed(0)
26
- # set `guidance_scale=1.0` to disable CFG
27
- image = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=1.0).images[0]
28
- ```
 
1
  ---
2
+ library_name: diffusers
3
+ base_model: stabilityai/stable-diffusion-xl-base-1.0
4
  tags:
5
  - lora
6
+ - text-to-image
7
+ license: openrail++
8
  ---
9
 
10
+ # Latent Consistency Model (LCM) LoRA: SDXL
11
+
12
+ Latent Consistency Model (LCM) LoRA was proposed in [LCM-LoRA: A universal Stable-Diffusion Acceleration Module](TODO:)
13
+ by *Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu et al.*
14
+
15
+ It is a distilled consistency adapter for [`stable-diffusion-xl-base-1.0`](stabilityai/stable-diffusion-xl-base-1.0) that allows
16
+ to reduce the number of inference steps to only between **2 - 8 steps**.
17
+
18
+ | Model | Params / M |
19
+ |----------------------------------------------------------------------------|------------|
20
+ | [lcm-lora-sdv1-5](https://huggingface.co/latent-consistency/lcm-lora-sdv1-5) | 67.5 |
21
+ | [lcm-lora-ssd-1b](https://huggingface.co/latent-consistency/lcm-lora-ssd-1b) | 105 |
22
+ | [**lcm-lora-sdxl**](https://huggingface.co/latent-consistency/lcm-lora-sdxl) | **197M** |
23
+
24
+ ## Usage
25
+
26
+ LCM-LoRA is supported in 🤗 Hugging Face Diffusers library from version v0.23.0 onwards. To run the model, first
27
+ install the latest version of the Diffusers library as well as `peft`, `accelerate` and `transformers`.
28
+ audio dataset from the Hugging Face Hub:
29
+
30
+ ```bash
31
+ pip install --upgrade pip
32
+ pip install --upgrade diffusers transformers accelerate peft
33
+ ```
34
+
35
+ ### Text-to-Image
36
+
37
+ The adapter can be loaded with it's base model `stabilityai/stable-diffusion-xl-base-1.0`. Next, the scheduler needs to be changed to [`LCMScheduler`](https://huggingface.co/docs/diffusers/v0.22.3/en/api/schedulers/lcm#diffusers.LCMScheduler) and we can reduce the number of inference steps to just 2 to 8 steps.
38
+ Please make sure to either disable `guidance_scale` or use values between 1.0 and 2.0.
39
+
40
+ ```python
41
  import torch
42
+ from diffusers import LCMScheduler, AutoPipelineForText2Image
43
+
44
+ model_id = "stabilityai/stable-diffusion-xl-base-1.0"
45
+ adapter_id = "latent-consistency/lcm-lora-sdxl"
46
 
47
+ pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16")
48
  pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
49
+ pipe.to("cuda")
50
 
51
  # load and fuse lcm lora
52
+ pipe.load_lora_weights(adapter_id)
53
  pipe.fuse_lora()
54
 
 
 
55
 
56
+ prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
57
+
58
+ # disable guidance_scale by passing 0
59
+ image = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=0).images[0]
60
+ ```
61
+
62
+ ### Image-to-Image
63
+
64
+ Works as well! TODO docs
65
+
66
+ ### Inpainting
67
+
68
+ Works as well! TODO docs
69
+
70
+ ### ControlNet
71
+
72
+ Works as well! TODO docs
73
+
74
+ ### T2I Adapter
75
+
76
+ Works as well! TODO docs
77
 
78
+ ## Training
79
 
80
+ TODO