--- base_model: https://huggingface.co/Phind/Phind-CodeLlama-34B-v2 inference: false license: llama2 model_creator: https://huggingface.co/Phind model_name: Phind-Codellama-34B-v2 model_type: llama quantized_by: latimar --- # Phind-CodeLlama-34B-v2 EXL2 Weights of [Phind-CodeLlama-34B-v2](https://huggingface.co/Phind/Phind-CodeLlama-34B-v2) converted to [EXL2](https://github.com/turboderp/exllamav2#exl2-quantization) format. Converted with the ExllamaV2 [convert.py](https://github.com/turboderp/exllamav2/blob/master/convert.py) script, exllamav2 [commit](https://github.com/turboderp/exllamav2/commit/31f31e1b08eeccf4a5ab31fd202ef3100dce8d22) Original model in full weights achieves **73.8** HumanEval score. Here are EXL2 quants scores: | BPW (hb=8) | HumanEval | Evol-Ins PPL | Wiki PPL | File Size (Gb) | | ----------- | --------- | ------------ | ---------- | -------------- | | 2.55 | **40.24** | 2.0944 | 18.9843 | 10.62 | | 2.8 | **63.41** | 2.0814 | 17.6326 | 11.58 | | 3.0 | **66.46** | 2.0600 | 11.2096 | 12.36 | | 4.625 | **70.12** | 2.0401 | 6.7243 | 18.63 | | 4.8 | **70.73** | 2.0361 | 6.7263 | 19.32 | ## Downloads If you just do `git clone` you will get weights of all the quants, which is probably not what you want. You need to download (and put in the same dir) the following common files: * [config.json](https://huggingface.co/latimar/Phind-Codellama-34B-v2-megacode-exl2/raw/main/config.json) * [generation_config.json](https://huggingface.co/latimar/Phind-Codellama-34B-v2-megacode-exl2/raw/main/generation_config.json) * [special_tokens_map.json](https://huggingface.co/latimar/Phind-Codellama-34B-v2-megacode-exl2/blob/main/special_tokens_map.json) * [tokenizer.model](https://huggingface.co/latimar/Phind-Codellama-34B-v2-megacode-exl2/raw/main/tokenizer.model) * [tokenizer_config.json](https://huggingface.co/latimar/Phind-Codellama-34B-v2-megacode-exl2/raw/main/tokenizer_config.json) And the weights of a particular quant: all safetensors files + `model.safetensors.index.json` file from the quant directory. Either download these files via the Web UI, or, e.g., with curl: ``` mkdir phind-2.55 cd phind-2.55 curl -LO https://huggingface.co/latimar/Phind-Codellama-34B-v2-megacode-exl2/raw/main/config.json curl -LO https://huggingface.co/latimar/Phind-Codellama-34B-v2-megacode-exl2/raw/main/generation_config.json curl -LO https://huggingface.co/latimar/Phind-Codellama-34B-v2-megacode-exl2/blob/main/special_tokens_map.json curl -LO https://huggingface.co/latimar/Phind-Codellama-34B-v2-megacode-exl2/raw/main/tokenizer.model curl -LO https://huggingface.co/latimar/Phind-Codellama-34B-v2-megacode-exl2/raw/main/tokenizer_config.json curl -LO https://huggingface.co/latimar/Phind-Codellama-34B-v2-megacode-exl2/raw/main/2.55/model.safetensors.index.json curl -LO https://huggingface.co/latimar/Phind-Codellama-34B-v2-megacode-exl2/raw/main/2.55/output-00001-of-00002.safetensors curl -LO https://huggingface.co/latimar/Phind-Codellama-34B-v2-megacode-exl2/raw/main/2.55/output-00002-of-00002.safetensors ``` ## Datasets used for calibration and PPL measurement * [Calibration](https://huggingface.co/datasets/rombodawg/2XUNCENSORED_MegaCodeTraining188k) * [Wiki](https://huggingface.co/datasets/wikitext/blob/refs%2Fconvert%2Fparquet/wikitext-2-v1/validation/0000.parquet) * [Evol-Ins](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1/blob/refs%2Fconvert%2Fparquet/default/train/0000.parquet) ### Conversion Conversion arguments: ``` convert.py -i ${MODEL_DIR_FP16} -o ${WIP_DIR} -cf ${MODEL_DIR_EXL} -c ${CALIBRATION_DATASET} -r 200 -mr 32 -l 4096 -ml 4096 -hb 8 -b ${BPW} ``` `2.55` quant was converted using even more raws: `-r 400 -mr 64` ### Perplexity Perplexity was measured with [test_inference.py](https://github.com/turboderp/exllamav2/blob/master/test_inference.py) script: ``` test_inference.py -m ${MODEL_DIR_EXL} -ed ${PPL_DATASET} ``` ### Human-Eval #### Evaluation Samples for the Human-Eval scores of EXL2 quants were generated with [exl2.human-eval.py](https://github.com/epicfilemcnulty/llm-tools/blob/main/eval/exl2.human-eval.py) script: ``` python exl2.human-eval.py -m ${MODEL_DIR_EXL2} -c 4096 -o ${BPW}-samples.jsonl ``` Human-Eval samples of NF4/INT8 quants were generated with [tf.human-eval.py](https://github.com/epicfilemcnulty/llm-tools/blob/main/eval/tf.human-eval.py) script: ``` python tf.human-eval.py -m ${MODEL_DIR_FP16} -o nf4-samples.jsonl ``` #### Comparison Phind says that the original model in full weights achieves **73.8** Human-Eval score. NF4 quant gives me **70.73** WizardCoder models claimed Human-Eval scores (full weights): | Model | Score | | ----- | ----- | | WizardCoder-Python-34B-V1.0 | **73.2** | | WizardCoder-Python-13B-V1.0 | **64.0** | Vanilla Mistral-7B INT8 scores **27.43** [EXL2 3.2-bpw quant](https://huggingface.co/firelzrd/Phind-CodeLlama-34B-v2-exl2/tree/3_2-bpw) of this model by [firelzrd](https://huggingface.co/firelzrd) scores **60.97**.