lazyrama commited on
Commit
65876fe
1 Parent(s): 7662040

PPO MLP WALKER VERSION 1

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
Mlp.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b286e0ac94f89ff14c49c486d61092f832e8a62059abe4e1c95f585399b2377b
3
+ size 170145
Mlp/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
Mlp/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f25802459e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2580245a70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2580245b00>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2580245b90>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2580245c20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2580245cb0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2580245d40>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2580245dd0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2580245e60>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2580245ef0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2580245f80>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f258029b1e0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVYwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsYhZRoColDYAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLGIWUaAqJQ2AAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSxiFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsYhZRoKolDGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGKMCl9ucF9yYW5kb22UTnViLg==",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 24
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.box.Box'>",
38
+ ":serialized:": "gASVmwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsEhZRoColDEAAAgL8AAIC/AACAvwAAgL+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSwSFlGgKiUMQAACAPwAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLBIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwQBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsEhZRoKolDBAEBAQGUdJRijApfbnBfcmFuZG9tlE51Yi4=",
39
+ "dtype": "float32",
40
+ "_shape": [
41
+ 4
42
+ ],
43
+ "low": "[-1. -1. -1. -1.]",
44
+ "high": "[1. 1. 1. 1.]",
45
+ "bounded_below": "[ True True True True]",
46
+ "bounded_above": "[ True True True True]",
47
+ "_np_random": null
48
+ },
49
+ "n_envs": 1,
50
+ "num_timesteps": 1000448,
51
+ "_total_timesteps": 1000000,
52
+ "_num_timesteps_at_start": 0,
53
+ "seed": null,
54
+ "action_noise": null,
55
+ "start_time": 1652264145.3133447,
56
+ "learning_rate": 0.0003,
57
+ "tensorboard_log": null,
58
+ "lr_schedule": {
59
+ ":type:": "<class 'function'>",
60
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
61
+ },
62
+ "_last_obs": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gASV6gAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLGIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNgHfcGPcpa6r3vo9Q+qIaPvLFrBr8CAIA/YFYfPQAAgL8AAAAAPwqTP7iVKj/wuvc+AQCAvwAAAAAvjKA+GaWiPmPiqj4ajLc+64nIPhkK5T7hHgc/hXArP9sGdD8AAIA/lHSUYi4="
65
+ },
66
+ "_last_episode_starts": {
67
+ ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
69
+ },
70
+ "_last_original_obs": null,
71
+ "_episode_num": 0,
72
+ "use_sde": false,
73
+ "sde_sample_freq": -1,
74
+ "_current_progress_remaining": -0.00044800000000000395,
75
+ "ep_info_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gASVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMpBnl+93akCUhpRSlIwBbJRNyQWMAXSUR0CxfOIt6HCXdX2UKGgGaAloD0MIt7dbkgNvVkCUhpRSlGgVTUEFaBZHQLF/tORkmQd1fZQoaAZoCWgPQwgO2quPBwhsQJSGlFKUaBVNewVoFkdAsYLNnzxwynV9lChoBmgJaA9DCEhrDDohmmxAlIaUUpRoFU1OBWgWR0Cxhntnwob5dX2UKGgGaAloD0MITkLpCyGea0CUhpRSlGgVTaEFaBZHQLGJY6KLsKN1fZQoaAZoCWgPQwisV5HRAXxsQJSGlFKUaBVNXAVoFkdAsYx/oq0+knV9lChoBmgJaA9DCNzVq8jo8E3AlIaUUpRoFU1oAmgWR0CxjiR/d69kdX2UKGgGaAloD0MIH9jxXyDmakCUhpRSlGgVTc4FaBZHQLGRLAgxJul1fZQoaAZoCWgPQwhsXP+uTyZqQJSGlFKUaBVNHwZoFkdAsZT3cj7hvXV9lChoBmgJaA9DCLFre7slQGtAlIaUUpRoFU21BWgWR0CxmFcFEAo5dX2UKGgGaAloD0MIT5Za7zcWbECUhpRSlGgVTXcFaBZHQLGcAcslLOB1fZQoaAZoCWgPQwhyT1d3rLNqQJSGlFKUaBVNywVoFkdAsZ9hLh73PHV9lChoBmgJaA9DCOZAD7Vty2tAlIaUUpRoFU2WBWgWR0Cxoz7srupkdX2UKGgGaAloD0MIq8/VVux3OUCUhpRSlGgVTdkDaBZHQLGlg0uDjBF1fZQoaAZoCWgPQwhlVYSbjIZrQJSGlFKUaBVNngVoFkdAsahprO7g9HV9lChoBmgJaA9DCBHDDmPSV1FAlIaUUpRoFU0pBWgWR0CxqxQG0NSZdX2UKGgGaAloD0MIrkhMUMPTakCUhpRSlGgVTdUFaBZHQLGvHcQRPGh1fZQoaAZoCWgPQwgpe0s5X9RNQJSGlFKUaBVNrQRoFkdAsbHEkMTewnV9lChoBmgJaA9DCK7wLhfxDT3AlIaUUpRoFU29AmgWR0Cxs5UI9kjHdX2UKGgGaAloD0MIqmVrfZGcOMCUhpRSlGgVTZsCaBZHQLG0jFoL5RF1fZQoaAZoCWgPQwjdXz3u26ZrQJSGlFKUaBVNlQVoFkdAsbhUxZdOZnV9lChoBmgJaA9DCEAUzJgCUWlAlIaUUpRoFU1ABmgWR0Cxu2z9sJpndX2UKGgGaAloD0MIdhw/VBqyWkCUhpRSlGgVTeQFaBZHQLG/kbJOnEV1fZQoaAZoCWgPQwj1EmOZfr5qQJSGlFKUaBVN8AVoFkdAscLfSofjj3V9lChoBmgJaA9DCPceLjnucktAlIaUUpRoFU0VBGgWR0CxxV+9zwMIdX2UKGgGaAloD0MIk1Z8Q+H6akCUhpRSlGgVTd0FaBZHQLHJLCa7Vax1fZQoaAZoCWgPQwgy5xn7EilrQJSGlFKUaBVNuwVoFkdAscwTV6NVBHV9lChoBmgJaA9DCOiGpux06WpAlIaUUpRoFU3KBWgWR0Cxz2XPu5SWdX2UKGgGaAloD0MINe84RUe2NUCUhpRSlGgVTdMDaBZHQLHRiUSqU/x1fZQoaAZoCWgPQwhnZfuQtwlsQJSGlFKUaBVNhAVoFkdAsdU5Jbt7bHV9lChoBmgJaA9DCDVfJR+7CwlAlIaUUpRoFU3aA2gWR0Cx12tB8hLXdX2UKGgGaAloD0MI+pl63aJBakCUhpRSlGgVTfkFaBZHQLHam1jRUm51fZQoaAZoCWgPQwjqymd5nlhrQJSGlFKUaBVNsgVoFkdAsd5behwl0HV9lChoBmgJaA9DCDzaOGKt8WlAlIaUUpRoFU0iBmgWR0Cx4c/sqrimdX2UKGgGaAloD0MIE+6VeasxakCUhpRSlGgVTQQGaBZHQLHl2ovBacJ1fZQoaAZoCWgPQwgT04VY/U9qQJSGlFKUaBVN/QVoFkdAsejQMG5c1XV9lChoBmgJaA9DCEm6ZvLNdgNAlIaUUpRoFU0oA2gWR0Cx6uTz/ZM+dX2UKGgGaAloD0MIcqjfha1ZOsCUhpRSlGgVTUYCaBZHQLHstZKnNxF1fZQoaAZoCWgPQwjUEFX4s3VrQJSGlFKUaBVNmwVoFkdAse/zlzU7S3V9lChoBmgJaA9DCAsOL4hIhWtAlIaUUpRoFU2gBWgWR0Cx8uATufEodX2UKGgGaAloD0MIt3wkJT16ZUCUhpRSlGgVTUAGaBZHQLH3EJ0W/Jx1fZQoaAZoCWgPQwgep+hIrs1qQJSGlFKUaBVN4AVoFkdAsfpDWd3B6HV9lChoBmgJaA9DCCob1lQWv1jAlIaUUpRoFUuKaBZHQLH7Rb5M10l1fZQoaAZoCWgPQwgudZDXAydqQJSGlFKUaBVNBwZoFkdAsf5Z8pkPMHV9lChoBmgJaA9DCJ0q3zOSJGtAlIaUUpRoFU27BWgWR0CyAafoV2zOdX2UKGgGaAloD0MIdqVlpN70akCUhpRSlGgVTdAFaBZHQLIFh43m3fB1fZQoaAZoCWgPQwiyZmSQO/ppQJSGlFKUaBVNFQZoFkdAsgiN7jT8YXV9lChoBmgJaA9DCH47iQj/sWlAlIaUUpRoFU09BmgWR0CyDGDBVMmGdX2UKGgGaAloD0MImPc40wTKa0CUhpRSlGgVTYYFaBZHQLIPUcUdq+J1fZQoaAZoCWgPQwguc7osJuYdwJSGlFKUaBVNNQNoFkdAshFuZpi7TXV9lChoBmgJaA9DCLbykv/Js2pAlIaUUpRoFU3SBWgWR0CyFS+RoysTdX2UKGgGaAloD0MIu+8YHvvdakCUhpRSlGgVTc0FaBZHQLIYJwg1WKd1fZQoaAZoCWgPQwgqAMYz6LdmQJSGlFKUaBVNQAZoFkdAshwuhWYF7nV9lChoBmgJaA9DCOLl6VxRgFzAlIaUUpRoFUsoaBZHQLIcQAymALB1fZQoaAZoCWgPQwgy6e+l8G1rQJSGlFKUaBVNrQVoFkdAsh89mh/RV3V9lChoBmgJaA9DCC+GcqJdB2pAlIaUUpRoFU0PBmgWR0CyJAOn/DLsdX2UKGgGaAloD0MI+P4G7dV8aUCUhpRSlGgVTTQGaBZHQLInbuQIUrV1fZQoaAZoCWgPQwjDRe7p6sFqQJSGlFKUaBVNzwVoFkdAsit4RZlnRXV9lChoBmgJaA9DCMFUM2up3mpAlIaUUpRoFU3VBWgWR0CyLntahYeUdX2UKGgGaAloD0MIL1BSYIEaakCUhpRSlGgVTQEGaBZHQLIyg73PAwh1fZQoaAZoCWgPQwh+HThnRGk3QJSGlFKUaBVNAQRoFkdAsjTPLhaTwHV9lChoBmgJaA9DCHejj/kAaGpAlIaUUpRoFU3uBWgWR0CyN+fEbYK6dX2UKGgGaAloD0MI0GOUZ97VakCUhpRSlGgVTcUFaBZHQLI727JW/8F1fZQoaAZoCWgPQwgXuDzWDCZrQJSGlFKUaBVNyAVoFkdAsj7rV2A5JnV9lChoBmgJaA9DCMOcoE0O82pAlIaUUpRoFU3NBWgWR0CyQhq55JK8dX2UKGgGaAloD0MI4sluZvRMakCUhpRSlGgVTf4FaBZHQLJGEo+Ofd11fZQoaAZoCWgPQwjfG0MAcOBpQJSGlFKUaBVNKwZoFkdAsklR/y5I6XV9lChoBmgJaA9DCN+Hg4So/WlAlIaUUpRoFU0XBmgWR0CyTSeyquKXdX2UKGgGaAloD0MImngHeFKkaECUhpRSlGgVTUAGaBZHQLJRIh7mdRR1fZQoaAZoCWgPQwghBrr2BQ9awJSGlFKUaBVLaGgWR0CyUVvikwevdX2UKGgGaAloD0MIYcPTK+UXakCUhpRSlGgVTQwGaBZHQLJUhatLcsV1fZQoaAZoCWgPQwgS3EjZoihqQJSGlFKUaBVNAgZoFkdAslhAiaAnUnV9lChoBmgJaA9DCNqqJLIPQWDAlIaUUpRoFUuZaBZHQLJYeVObiId1fZQoaAZoCWgPQwhyM9yAT9BqQJSGlFKUaBVN0gVoFkdAsltnaBZpz3V9lChoBmgJaA9DCGH/dW7aF2pAlIaUUpRoFU0LBmgWR0CyX6IvBacJdX2UKGgGaAloD0MI9poeFBT0akCUhpRSlGgVTccFaBZHQLJjAVd5Y5l1fZQoaAZoCWgPQwhvD0JAvlxLwJSGlFKUaBVN2AFoFkdAsmScKtxMnXV9lChoBmgJaA9DCNC52/XS/2lAlIaUUpRoFU0UBmgWR0CyZ93LRrrPdX2UKGgGaAloD0MIPwEUI0urZ0CUhpRSlGgVTUAGaBZHQLJrzHcUM5R1fZQoaAZoCWgPQwjdYROZuWNdwJSGlFKUaBVLKGgWR0Cya94QBgeBdX2UKGgGaAloD0MIXBsqxvl4XcCUhpRSlGgVS05oFkdAsmv/IMjNZHV9lChoBmgJaA9DCH4BvXDng2lAlIaUUpRoFU0uBmgWR0Cyb0WPo3aSdX2UKGgGaAloD0MI0xIroxH9aUCUhpRSlGgVTQkGaBZHQLJzS2VmjCZ1fZQoaAZoCWgPQwiPw2D+CmRrQJSGlFKUaBVNlQVoFkdAsnYlDb8FZHV9lChoBmgJaA9DCHFzKhkAei1AlIaUUpRoFU17A2gWR0CyeDSQDFIedX2UKGgGaAloD0MIbhea6zTIaUCUhpRSlGgVTSgGaBZHQLJ8KxagVXV1fZQoaAZoCWgPQwjRJLGk3LlmQJSGlFKUaBVNQAZoFkdAsn+CGpMpPXV9lChoBmgJaA9DCAbVBieigmtAlIaUUpRoFU2VBWgWR0Cyg6WCqZMMdX2UKGgGaAloD0MIB13CobfIXcCUhpRSlGgVSy5oFkdAsoO2+nIhhnV9lChoBmgJaA9DCKzHfav1bmpAlIaUUpRoFU3TBWgWR0CyhsUjC53DdX2UKGgGaAloD0MImz3QCgw0XcCUhpRSlGgVS3hoFkdAsobyWLP2PHV9lChoBmgJaA9DCIzbaADvJGtAlIaUUpRoFU2vBWgWR0Cyis+6iCardX2UKGgGaAloD0MI6Sec3VrCakCUhpRSlGgVTdAFaBZHQLKNwgJkXk51fZQoaAZoCWgPQwhQNuUKb7trQJSGlFKUaBVNhQVoFkdAspF1J9RaYHV9lChoBmgJaA9DCIDwoURL9GlAlIaUUpRoFU0ZBmgWR0CylMgvxpcpdX2UKGgGaAloD0MISgnBqnrqaUCUhpRSlGgVTRAGaBZHQLKYqOLiuMd1fZQoaAZoCWgPQwhgr7DgfuNqQJSGlFKUaBVNvAVoFkdAspufAxi5NHV9lChoBmgJaA9DCKK2DaMgPWpAlIaUUpRoFU36BWgWR0Cyn8jIq9XcdX2UKGgGaAloD0MIrYcvE0XiWUCUhpRSlGgVTUAGaBZHQLKjZZU1hst1fZQoaAZoCWgPQwhA3qtWpmZmQJSGlFKUaBVNQAZoFkdAsqdOLgn+h3VlLg=="
78
+ },
79
+ "ep_success_buffer": {
80
+ ":type:": "<class 'collections.deque'>",
81
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
82
+ },
83
+ "_n_updates": 39080,
84
+ "n_steps": 1024,
85
+ "gamma": 0.999,
86
+ "gae_lambda": 0.98,
87
+ "ent_coef": 0.01,
88
+ "vf_coef": 0.5,
89
+ "max_grad_norm": 0.5,
90
+ "batch_size": 128,
91
+ "n_epochs": 20,
92
+ "clip_range": {
93
+ ":type:": "<class 'function'>",
94
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
95
+ },
96
+ "clip_range_vf": null,
97
+ "normalize_advantage": true,
98
+ "target_kl": null
99
+ }
Mlp/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75c5e5439b80f6a4ec2d413774e8412485c901c13a8c9b3be8a28954f979736d
3
+ size 101783
Mlp/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:756d836b76323b12fbc53de500f62171b23d91159560f990e3e59fc7b351b8da
3
+ size 51710
Mlp/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Mlp/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.107+-x86_64-with-debian-bullseye-sid #1 SMP Sun Apr 24 15:04:08 UTC 2022
2
+ Python: 3.7.12
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.9.1
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - BipedalWalker-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 225.84 +/- 6.93
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: BipedalWalker-v3
20
+ type: BipedalWalker-v3
21
+ ---
22
+
23
+ # **PPO** Agent playing **BipedalWalker-v3**
24
+ This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f25802459e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2580245a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2580245b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2580245b90>", "_build": "<function ActorCriticPolicy._build at 0x7f2580245c20>", "forward": "<function ActorCriticPolicy.forward at 0x7f2580245cb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2580245d40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2580245dd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2580245e60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2580245ef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2580245f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f258029b1e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVYwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsYhZRoColDYAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLGIWUaAqJQ2AAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSxiFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsYhZRoKolDGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVmwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsEhZRoColDEAAAgL8AAIC/AACAvwAAgL+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSwSFlGgKiUMQAACAPwAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLBIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwQBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsEhZRoKolDBAEBAQGUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652264145.3133447, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASV6gAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLGIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNgHfcGPcpa6r3vo9Q+qIaPvLFrBr8CAIA/YFYfPQAAgL8AAAAAPwqTP7iVKj/wuvc+AQCAvwAAAAAvjKA+GaWiPmPiqj4ajLc+64nIPhkK5T7hHgc/hXArP9sGdD8AAIA/lHSUYi4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMpBnl+93akCUhpRSlIwBbJRNyQWMAXSUR0CxfOIt6HCXdX2UKGgGaAloD0MIt7dbkgNvVkCUhpRSlGgVTUEFaBZHQLF/tORkmQd1fZQoaAZoCWgPQwgO2quPBwhsQJSGlFKUaBVNewVoFkdAsYLNnzxwynV9lChoBmgJaA9DCEhrDDohmmxAlIaUUpRoFU1OBWgWR0Cxhntnwob5dX2UKGgGaAloD0MITkLpCyGea0CUhpRSlGgVTaEFaBZHQLGJY6KLsKN1fZQoaAZoCWgPQwisV5HRAXxsQJSGlFKUaBVNXAVoFkdAsYx/oq0+knV9lChoBmgJaA9DCNzVq8jo8E3AlIaUUpRoFU1oAmgWR0CxjiR/d69kdX2UKGgGaAloD0MIH9jxXyDmakCUhpRSlGgVTc4FaBZHQLGRLAgxJul1fZQoaAZoCWgPQwhsXP+uTyZqQJSGlFKUaBVNHwZoFkdAsZT3cj7hvXV9lChoBmgJaA9DCLFre7slQGtAlIaUUpRoFU21BWgWR0CxmFcFEAo5dX2UKGgGaAloD0MIT5Za7zcWbECUhpRSlGgVTXcFaBZHQLGcAcslLOB1fZQoaAZoCWgPQwhyT1d3rLNqQJSGlFKUaBVNywVoFkdAsZ9hLh73PHV9lChoBmgJaA9DCOZAD7Vty2tAlIaUUpRoFU2WBWgWR0Cxoz7srupkdX2UKGgGaAloD0MIq8/VVux3OUCUhpRSlGgVTdkDaBZHQLGlg0uDjBF1fZQoaAZoCWgPQwhlVYSbjIZrQJSGlFKUaBVNngVoFkdAsahprO7g9HV9lChoBmgJaA9DCBHDDmPSV1FAlIaUUpRoFU0pBWgWR0CxqxQG0NSZdX2UKGgGaAloD0MIrkhMUMPTakCUhpRSlGgVTdUFaBZHQLGvHcQRPGh1fZQoaAZoCWgPQwgpe0s5X9RNQJSGlFKUaBVNrQRoFkdAsbHEkMTewnV9lChoBmgJaA9DCK7wLhfxDT3AlIaUUpRoFU29AmgWR0Cxs5UI9kjHdX2UKGgGaAloD0MIqmVrfZGcOMCUhpRSlGgVTZsCaBZHQLG0jFoL5RF1fZQoaAZoCWgPQwjdXz3u26ZrQJSGlFKUaBVNlQVoFkdAsbhUxZdOZnV9lChoBmgJaA9DCEAUzJgCUWlAlIaUUpRoFU1ABmgWR0Cxu2z9sJpndX2UKGgGaAloD0MIdhw/VBqyWkCUhpRSlGgVTeQFaBZHQLG/kbJOnEV1fZQoaAZoCWgPQwj1EmOZfr5qQJSGlFKUaBVN8AVoFkdAscLfSofjj3V9lChoBmgJaA9DCPceLjnucktAlIaUUpRoFU0VBGgWR0CxxV+9zwMIdX2UKGgGaAloD0MIk1Z8Q+H6akCUhpRSlGgVTd0FaBZHQLHJLCa7Vax1fZQoaAZoCWgPQwgy5xn7EilrQJSGlFKUaBVNuwVoFkdAscwTV6NVBHV9lChoBmgJaA9DCOiGpux06WpAlIaUUpRoFU3KBWgWR0Cxz2XPu5SWdX2UKGgGaAloD0MINe84RUe2NUCUhpRSlGgVTdMDaBZHQLHRiUSqU/x1fZQoaAZoCWgPQwhnZfuQtwlsQJSGlFKUaBVNhAVoFkdAsdU5Jbt7bHV9lChoBmgJaA9DCDVfJR+7CwlAlIaUUpRoFU3aA2gWR0Cx12tB8hLXdX2UKGgGaAloD0MI+pl63aJBakCUhpRSlGgVTfkFaBZHQLHam1jRUm51fZQoaAZoCWgPQwjqymd5nlhrQJSGlFKUaBVNsgVoFkdAsd5behwl0HV9lChoBmgJaA9DCDzaOGKt8WlAlIaUUpRoFU0iBmgWR0Cx4c/sqrimdX2UKGgGaAloD0MIE+6VeasxakCUhpRSlGgVTQQGaBZHQLHl2ovBacJ1fZQoaAZoCWgPQwgT04VY/U9qQJSGlFKUaBVN/QVoFkdAsejQMG5c1XV9lChoBmgJaA9DCEm6ZvLNdgNAlIaUUpRoFU0oA2gWR0Cx6uTz/ZM+dX2UKGgGaAloD0MIcqjfha1ZOsCUhpRSlGgVTUYCaBZHQLHstZKnNxF1fZQoaAZoCWgPQwjUEFX4s3VrQJSGlFKUaBVNmwVoFkdAse/zlzU7S3V9lChoBmgJaA9DCAsOL4hIhWtAlIaUUpRoFU2gBWgWR0Cx8uATufEodX2UKGgGaAloD0MIt3wkJT16ZUCUhpRSlGgVTUAGaBZHQLH3EJ0W/Jx1fZQoaAZoCWgPQwgep+hIrs1qQJSGlFKUaBVN4AVoFkdAsfpDWd3B6HV9lChoBmgJaA9DCCob1lQWv1jAlIaUUpRoFUuKaBZHQLH7Rb5M10l1fZQoaAZoCWgPQwgudZDXAydqQJSGlFKUaBVNBwZoFkdAsf5Z8pkPMHV9lChoBmgJaA9DCJ0q3zOSJGtAlIaUUpRoFU27BWgWR0CyAafoV2zOdX2UKGgGaAloD0MIdqVlpN70akCUhpRSlGgVTdAFaBZHQLIFh43m3fB1fZQoaAZoCWgPQwiyZmSQO/ppQJSGlFKUaBVNFQZoFkdAsgiN7jT8YXV9lChoBmgJaA9DCH47iQj/sWlAlIaUUpRoFU09BmgWR0CyDGDBVMmGdX2UKGgGaAloD0MImPc40wTKa0CUhpRSlGgVTYYFaBZHQLIPUcUdq+J1fZQoaAZoCWgPQwguc7osJuYdwJSGlFKUaBVNNQNoFkdAshFuZpi7TXV9lChoBmgJaA9DCLbykv/Js2pAlIaUUpRoFU3SBWgWR0CyFS+RoysTdX2UKGgGaAloD0MIu+8YHvvdakCUhpRSlGgVTc0FaBZHQLIYJwg1WKd1fZQoaAZoCWgPQwgqAMYz6LdmQJSGlFKUaBVNQAZoFkdAshwuhWYF7nV9lChoBmgJaA9DCOLl6VxRgFzAlIaUUpRoFUsoaBZHQLIcQAymALB1fZQoaAZoCWgPQwgy6e+l8G1rQJSGlFKUaBVNrQVoFkdAsh89mh/RV3V9lChoBmgJaA9DCC+GcqJdB2pAlIaUUpRoFU0PBmgWR0CyJAOn/DLsdX2UKGgGaAloD0MI+P4G7dV8aUCUhpRSlGgVTTQGaBZHQLInbuQIUrV1fZQoaAZoCWgPQwjDRe7p6sFqQJSGlFKUaBVNzwVoFkdAsit4RZlnRXV9lChoBmgJaA9DCMFUM2up3mpAlIaUUpRoFU3VBWgWR0CyLntahYeUdX2UKGgGaAloD0MIL1BSYIEaakCUhpRSlGgVTQEGaBZHQLIyg73PAwh1fZQoaAZoCWgPQwh+HThnRGk3QJSGlFKUaBVNAQRoFkdAsjTPLhaTwHV9lChoBmgJaA9DCHejj/kAaGpAlIaUUpRoFU3uBWgWR0CyN+fEbYK6dX2UKGgGaAloD0MI0GOUZ97VakCUhpRSlGgVTcUFaBZHQLI727JW/8F1fZQoaAZoCWgPQwgXuDzWDCZrQJSGlFKUaBVNyAVoFkdAsj7rV2A5JnV9lChoBmgJaA9DCMOcoE0O82pAlIaUUpRoFU3NBWgWR0CyQhq55JK8dX2UKGgGaAloD0MI4sluZvRMakCUhpRSlGgVTf4FaBZHQLJGEo+Ofd11fZQoaAZoCWgPQwjfG0MAcOBpQJSGlFKUaBVNKwZoFkdAsklR/y5I6XV9lChoBmgJaA9DCN+Hg4So/WlAlIaUUpRoFU0XBmgWR0CyTSeyquKXdX2UKGgGaAloD0MImngHeFKkaECUhpRSlGgVTUAGaBZHQLJRIh7mdRR1fZQoaAZoCWgPQwghBrr2BQ9awJSGlFKUaBVLaGgWR0CyUVvikwevdX2UKGgGaAloD0MIYcPTK+UXakCUhpRSlGgVTQwGaBZHQLJUhatLcsV1fZQoaAZoCWgPQwgS3EjZoihqQJSGlFKUaBVNAgZoFkdAslhAiaAnUnV9lChoBmgJaA9DCNqqJLIPQWDAlIaUUpRoFUuZaBZHQLJYeVObiId1fZQoaAZoCWgPQwhyM9yAT9BqQJSGlFKUaBVN0gVoFkdAsltnaBZpz3V9lChoBmgJaA9DCGH/dW7aF2pAlIaUUpRoFU0LBmgWR0CyX6IvBacJdX2UKGgGaAloD0MI9poeFBT0akCUhpRSlGgVTccFaBZHQLJjAVd5Y5l1fZQoaAZoCWgPQwhvD0JAvlxLwJSGlFKUaBVN2AFoFkdAsmScKtxMnXV9lChoBmgJaA9DCNC52/XS/2lAlIaUUpRoFU0UBmgWR0CyZ93LRrrPdX2UKGgGaAloD0MIPwEUI0urZ0CUhpRSlGgVTUAGaBZHQLJrzHcUM5R1fZQoaAZoCWgPQwjdYROZuWNdwJSGlFKUaBVLKGgWR0Cya94QBgeBdX2UKGgGaAloD0MIXBsqxvl4XcCUhpRSlGgVS05oFkdAsmv/IMjNZHV9lChoBmgJaA9DCH4BvXDng2lAlIaUUpRoFU0uBmgWR0Cyb0WPo3aSdX2UKGgGaAloD0MI0xIroxH9aUCUhpRSlGgVTQkGaBZHQLJzS2VmjCZ1fZQoaAZoCWgPQwiPw2D+CmRrQJSGlFKUaBVNlQVoFkdAsnYlDb8FZHV9lChoBmgJaA9DCHFzKhkAei1AlIaUUpRoFU17A2gWR0CyeDSQDFIedX2UKGgGaAloD0MIbhea6zTIaUCUhpRSlGgVTSgGaBZHQLJ8KxagVXV1fZQoaAZoCWgPQwjRJLGk3LlmQJSGlFKUaBVNQAZoFkdAsn+CGpMpPXV9lChoBmgJaA9DCAbVBieigmtAlIaUUpRoFU2VBWgWR0Cyg6WCqZMMdX2UKGgGaAloD0MIB13CobfIXcCUhpRSlGgVSy5oFkdAsoO2+nIhhnV9lChoBmgJaA9DCKzHfav1bmpAlIaUUpRoFU3TBWgWR0CyhsUjC53DdX2UKGgGaAloD0MImz3QCgw0XcCUhpRSlGgVS3hoFkdAsobyWLP2PHV9lChoBmgJaA9DCIzbaADvJGtAlIaUUpRoFU2vBWgWR0Cyis+6iCardX2UKGgGaAloD0MI6Sec3VrCakCUhpRSlGgVTdAFaBZHQLKNwgJkXk51fZQoaAZoCWgPQwhQNuUKb7trQJSGlFKUaBVNhQVoFkdAspF1J9RaYHV9lChoBmgJaA9DCIDwoURL9GlAlIaUUpRoFU0ZBmgWR0CylMgvxpcpdX2UKGgGaAloD0MISgnBqnrqaUCUhpRSlGgVTRAGaBZHQLKYqOLiuMd1fZQoaAZoCWgPQwhgr7DgfuNqQJSGlFKUaBVNvAVoFkdAspufAxi5NHV9lChoBmgJaA9DCKK2DaMgPWpAlIaUUpRoFU36BWgWR0Cyn8jIq9XcdX2UKGgGaAloD0MIrYcvE0XiWUCUhpRSlGgVTUAGaBZHQLKjZZU1hst1fZQoaAZoCWgPQwhA3qtWpmZmQJSGlFKUaBVNQAZoFkdAsqdOLgn+h3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 39080, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.107+-x86_64-with-debian-bullseye-sid #1 SMP Sun Apr 24 15:04:08 UTC 2022", "Python": "3.7.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.9.1", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f564c2fdd6f0006177cfe24fbcd4fcb13eefe96d2b0ae81f4e5c3473d63dcf9
3
+ size 432179
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 225.84374500496324, "std_reward": 6.926616286579865, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T10:58:07.921568"}