File size: 6,612 Bytes
2af8334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: mit
base_model: facebook/bart-large-xsum
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: text_shortening_model_v34
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# text_shortening_model_v34

This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7697
- Rouge1: 0.4731
- Rouge2: 0.253
- Rougel: 0.4166
- Rougelsum: 0.416
- Bert precision: 0.8697
- Bert recall: 0.8697
- Average word count: 8.7087
- Max word count: 17
- Min word count: 5
- Average token count: 16.3093
- % shortened texts with length > 12: 6.6066

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:|
| 2.4675        | 1.0   | 19   | 3.1777          | 0.4029 | 0.1769 | 0.3503 | 0.3498    | 0.8509         | 0.857       | 9.6577             | 17             | 5              | 15.4324             | 10.2102                            |
| 1.1669        | 2.0   | 38   | 1.9224          | 0.4506 | 0.2396 | 0.4184 | 0.4181    | 0.864          | 0.8688      | 8.6306             | 15             | 5              | 14.2613             | 4.2042                             |
| 0.9292        | 3.0   | 57   | 1.7461          | 0.4654 | 0.2556 | 0.4186 | 0.419     | 0.8654         | 0.8722      | 9.0751             | 17             | 5              | 14.9099             | 4.2042                             |
| 0.7876        | 4.0   | 76   | 1.9057          | 0.4003 | 0.207  | 0.367  | 0.366     | 0.8539         | 0.8516      | 8.1021             | 13             | 5              | 16.2883             | 1.2012                             |
| 0.5976        | 5.0   | 95   | 1.7603          | 0.4776 | 0.2636 | 0.4254 | 0.4248    | 0.8659         | 0.8754      | 9.1952             | 16             | 5              | 15.0961             | 6.006                              |
| 0.469         | 6.0   | 114  | 2.1107          | 0.4675 | 0.2542 | 0.4077 | 0.4081    | 0.856          | 0.8776      | 11.1802            | 20             | 5              | 18.4505             | 31.5315                            |
| 0.4291        | 7.0   | 133  | 1.7980          | 0.4701 | 0.2509 | 0.4202 | 0.4195    | 0.8647         | 0.8723      | 9.1832             | 15             | 5              | 14.7267             | 6.3063                             |
| 0.3673        | 8.0   | 152  | 1.9170          | 0.4669 | 0.2574 | 0.4188 | 0.4187    | 0.8678         | 0.8698      | 8.6306             | 18             | 5              | 14.3093             | 3.9039                             |
| 0.3432        | 9.0   | 171  | 2.0268          | 0.4804 | 0.2691 | 0.4254 | 0.4249    | 0.8682         | 0.8753      | 9.2402             | 18             | 5              | 14.6847             | 9.3093                             |
| 0.3094        | 10.0  | 190  | 2.1107          | 0.4809 | 0.2724 | 0.4353 | 0.4337    | 0.8689         | 0.8739      | 9.2883             | 17             | 4              | 16.2162             | 9.009                              |
| 0.4402        | 11.0  | 209  | 2.2507          | 0.4816 | 0.268  | 0.428  | 0.4278    | 0.8668         | 0.8743      | 9.4805             | 18             | 4              | 16.6126             | 10.8108                            |
| 0.3691        | 12.0  | 228  | 2.1652          | 0.4784 | 0.2637 | 0.4286 | 0.4277    | 0.8683         | 0.8714      | 8.7988             | 15             | 5              | 14.5105             | 6.006                              |
| 0.1853        | 13.0  | 247  | 2.3660          | 0.4705 | 0.259  | 0.4119 | 0.4115    | 0.8686         | 0.8695      | 8.7898             | 17             | 5              | 16.2432             | 6.6066                             |
| 0.3186        | 14.0  | 266  | 2.3237          | 0.4817 | 0.27   | 0.4273 | 0.4271    | 0.8698         | 0.8738      | 8.973              | 17             | 5              | 16.5976             | 9.3093                             |
| 0.1745        | 15.0  | 285  | 2.2675          | 0.4672 | 0.2577 | 0.4177 | 0.4165    | 0.8698         | 0.8694      | 8.6066             | 16             | 5              | 14.7117             | 3.9039                             |
| 0.1304        | 16.0  | 304  | 2.5157          | 0.4726 | 0.253  | 0.418  | 0.4167    | 0.8691         | 0.8688      | 8.6517             | 17             | 4              | 15.8468             | 3.9039                             |
| 0.1432        | 17.0  | 323  | 2.4798          | 0.4744 | 0.2614 | 0.4204 | 0.4196    | 0.869          | 0.8725      | 8.9189             | 17             | 5              | 15.5015             | 6.006                              |
| 0.1116        | 18.0  | 342  | 2.5924          | 0.4772 | 0.2589 | 0.4222 | 0.4221    | 0.87           | 0.8717      | 8.7508             | 17             | 5              | 15.6096             | 6.9069                             |
| 0.0921        | 19.0  | 361  | 2.6547          | 0.4733 | 0.2541 | 0.4205 | 0.4199    | 0.8694         | 0.8694      | 8.6787             | 16             | 5              | 15.4204             | 6.006                              |
| 0.0679        | 20.0  | 380  | 2.7697          | 0.4731 | 0.253  | 0.4166 | 0.416     | 0.8697         | 0.8697      | 8.7087             | 17             | 5              | 16.3093             | 6.6066                             |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3