File size: 6,614 Bytes
dad7a2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: mit
base_model: facebook/bart-large-xsum
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: text_shortening_model_v44
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# text_shortening_model_v44

This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8836
- Rouge1: 0.4921
- Rouge2: 0.2719
- Rougel: 0.4429
- Rougelsum: 0.4423
- Bert precision: 0.8746
- Bert recall: 0.8761
- Average word count: 8.7063
- Max word count: 17
- Min word count: 5
- Average token count: 16.2989
- % shortened texts with length > 12: 8.7302

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:|
| 1.0083        | 1.0   | 83   | 1.4717          | 0.4904 | 0.2378 | 0.426  | 0.4266    | 0.8725         | 0.8732      | 8.5794             | 18             | 4              | 15.6164             | 6.3492                             |
| 0.5702        | 2.0   | 166  | 1.4852          | 0.4722 | 0.2421 | 0.414  | 0.4143    | 0.869          | 0.8653      | 7.9101             | 14             | 4              | 13.6455             | 1.5873                             |
| 0.4588        | 3.0   | 249  | 1.6283          | 0.5038 | 0.2733 | 0.4424 | 0.4422    | 0.8732         | 0.8794      | 9.0053             | 16             | 4              | 16.8386             | 8.9947                             |
| 0.3586        | 4.0   | 332  | 1.6017          | 0.4965 | 0.2762 | 0.4381 | 0.4383    | 0.8709         | 0.8787      | 9.2381             | 18             | 4              | 16.3042             | 12.1693                            |
| 0.2479        | 5.0   | 415  | 1.7497          | 0.4794 | 0.2613 | 0.4295 | 0.43      | 0.872          | 0.8702      | 8.3228             | 15             | 4              | 15.209              | 3.1746                             |
| 0.2296        | 6.0   | 498  | 1.8482          | 0.4935 | 0.2739 | 0.4442 | 0.4443    | 0.8737         | 0.8755      | 8.7963             | 17             | 5              | 16.2989             | 7.1429                             |
| 0.3065        | 7.0   | 581  | 1.9485          | 0.4765 | 0.2552 | 0.4213 | 0.4212    | 0.8698         | 0.8693      | 8.4683             | 17             | 5              | 15.6005             | 7.9365                             |
| 0.2598        | 8.0   | 664  | 2.1608          | 0.4871 | 0.2585 | 0.4316 | 0.4319    | 0.8707         | 0.8736      | 8.963              | 16             | 5              | 16.6481             | 9.5238                             |
| 0.2707        | 9.0   | 747  | 2.0966          | 0.4758 | 0.2603 | 0.4231 | 0.4246    | 0.8709         | 0.8717      | 8.4841             | 16             | 4              | 15.9312             | 7.1429                             |
| 0.2099        | 10.0  | 830  | 2.2721          | 0.4777 | 0.2604 | 0.4246 | 0.4246    | 0.8735         | 0.8724      | 8.4312             | 15             | 4              | 15.9471             | 5.5556                             |
| 0.1668        | 11.0  | 913  | 2.3536          | 0.4758 | 0.2541 | 0.4331 | 0.4328    | 0.8721         | 0.87        | 8.2857             | 14             | 4              | 15.7725             | 3.1746                             |
| 0.1552        | 12.0  | 996  | 2.4572          | 0.484  | 0.2562 | 0.4313 | 0.4304    | 0.8726         | 0.875       | 8.828              | 17             | 4              | 16.246              | 7.9365                             |
| 0.2141        | 13.0  | 1079 | 2.4485          | 0.4785 | 0.2631 | 0.4257 | 0.4252    | 0.8678         | 0.8736      | 9.1402             | 19             | 4              | 16.6561             | 11.3757                            |
| 0.1348        | 14.0  | 1162 | 2.5012          | 0.4821 | 0.2613 | 0.4292 | 0.4296    | 0.8706         | 0.8738      | 8.8783             | 17             | 4              | 16.5185             | 10.0529                            |
| 0.074         | 15.0  | 1245 | 2.5309          | 0.4915 | 0.2745 | 0.445  | 0.444     | 0.8764         | 0.8768      | 8.6667             | 16             | 4              | 16.2513             | 9.2593                             |
| 0.1822        | 16.0  | 1328 | 2.5735          | 0.4709 | 0.2566 | 0.4239 | 0.4232    | 0.872          | 0.8692      | 8.2063             | 15             | 3              | 15.7249             | 4.2328                             |
| 0.086         | 17.0  | 1411 | 2.8597          | 0.4831 | 0.2675 | 0.4373 | 0.4372    | 0.8722         | 0.8743      | 8.754              | 16             | 5              | 16.5476             | 8.7302                             |
| 0.0872        | 18.0  | 1494 | 2.7420          | 0.4831 | 0.2677 | 0.4367 | 0.4353    | 0.8724         | 0.873       | 8.664              | 17             | 5              | 16.3016             | 7.672                              |
| 0.1164        | 19.0  | 1577 | 2.8790          | 0.4867 | 0.269  | 0.4388 | 0.4381    | 0.8737         | 0.8755      | 8.7725             | 17             | 5              | 16.4418             | 8.9947                             |
| 0.1101        | 20.0  | 1660 | 2.8836          | 0.4921 | 0.2719 | 0.4429 | 0.4423    | 0.8746         | 0.8761      | 8.7063             | 17             | 5              | 16.2989             | 8.7302                             |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3