ldos commited on
Commit
f32591e
1 Parent(s): 793eda4

End of training

Browse files
Files changed (3) hide show
  1. README.md +74 -0
  2. generation_config.json +13 -0
  3. pytorch_model.bin +1 -1
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: facebook/bart-large-xsum
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - rouge
8
+ model-index:
9
+ - name: text_shortening_model_v49
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # text_shortening_model_v49
17
+
18
+ This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.7760
21
+ - Rouge1: 0.5119
22
+ - Rouge2: 0.2768
23
+ - Rougel: 0.4448
24
+ - Rougelsum: 0.4444
25
+ - Bert precision: 0.8755
26
+ - Bert recall: 0.8801
27
+ - Average word count: 8.8492
28
+ - Max word count: 20
29
+ - Min word count: 5
30
+ - Average token count: 16.4709
31
+ - % shortened texts with length > 12: 8.7302
32
+
33
+ ## Model description
34
+
35
+ More information needed
36
+
37
+ ## Intended uses & limitations
38
+
39
+ More information needed
40
+
41
+ ## Training and evaluation data
42
+
43
+ More information needed
44
+
45
+ ## Training procedure
46
+
47
+ ### Training hyperparameters
48
+
49
+ The following hyperparameters were used during training:
50
+ - learning_rate: 0.0001
51
+ - train_batch_size: 16
52
+ - eval_batch_size: 16
53
+ - seed: 42
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: linear
56
+ - num_epochs: 5
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 |
61
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:|
62
+ | 1.8542 | 1.0 | 83 | 1.6189 | 0.5121 | 0.2699 | 0.4302 | 0.4304 | 0.863 | 0.8909 | 11.3386 | 21 | 5 | 19.4312 | 31.746 |
63
+ | 0.9651 | 2.0 | 166 | 1.4837 | 0.4957 | 0.2664 | 0.4347 | 0.4362 | 0.8687 | 0.8758 | 8.8598 | 19 | 4 | 16.9815 | 9.2593 |
64
+ | 0.608 | 3.0 | 249 | 1.4074 | 0.5012 | 0.2693 | 0.4346 | 0.4342 | 0.8725 | 0.8781 | 8.836 | 20 | 4 | 15.5265 | 5.5556 |
65
+ | 0.3788 | 4.0 | 332 | 1.5646 | 0.5202 | 0.2836 | 0.4535 | 0.4537 | 0.876 | 0.881 | 8.9312 | 18 | 5 | 16.4365 | 10.3175 |
66
+ | 0.2296 | 5.0 | 415 | 1.7760 | 0.5119 | 0.2768 | 0.4448 | 0.4444 | 0.8755 | 0.8801 | 8.8492 | 20 | 5 | 16.4709 | 8.7302 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.33.1
72
+ - Pytorch 2.0.1+cu118
73
+ - Datasets 2.14.5
74
+ - Tokenizers 0.13.3
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 0,
3
+ "decoder_start_token_id": 2,
4
+ "early_stopping": true,
5
+ "eos_token_id": 2,
6
+ "forced_eos_token_id": 2,
7
+ "max_length": 62,
8
+ "min_length": 11,
9
+ "no_repeat_ngram_size": 3,
10
+ "num_beams": 6,
11
+ "pad_token_id": 1,
12
+ "transformers_version": "4.33.1"
13
+ }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dbf45cfc369dbfa6ba3925abd560a79165b396f9aa61e31ca7c27642b4401ccf
3
  size 1625537293
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:336eef3c8020ae71ec23451d53a0f6bcd777c787e7e7518d8df5d13bab41e681
3
  size 1625537293