File size: 7,059 Bytes
f8d409c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
model-index:
- name: text_shortening_model_v80
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# text_shortening_model_v80

This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1772
- Bert precision: 0.8996
- Bert recall: 0.9009
- Bert f1-score: 0.8998
- Average word count: 6.8393
- Max word count: 16
- Min word count: 3
- Average token count: 11.092
- % shortened texts with length > 12: 0.9816

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bert precision | Bert recall | Bert f1-score | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:-----------:|:-------------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:|
| 1.3549        | 1.0   | 30   | 1.0184          | 0.8861         | 0.887       | 0.886         | 7.016              | 18             | 2              | 11.2061             | 2.6994                             |
| 0.9772        | 2.0   | 60   | 0.9395          | 0.889          | 0.8903      | 0.8892        | 6.9436             | 16             | 2              | 11.1276             | 1.8405                             |
| 0.8398        | 3.0   | 90   | 0.9211          | 0.8904         | 0.8916      | 0.8906        | 6.9534             | 16             | 2              | 11.119              | 2.3313                             |
| 0.7412        | 4.0   | 120  | 0.9235          | 0.8926         | 0.8945      | 0.8931        | 6.9239             | 16             | 2              | 11.1926             | 1.5951                             |
| 0.6652        | 5.0   | 150  | 0.9173          | 0.8936         | 0.8968      | 0.8947        | 7.0442             | 16             | 3              | 11.4135             | 1.5951                             |
| 0.5992        | 6.0   | 180  | 0.9270          | 0.8962         | 0.8982      | 0.8968        | 6.9485             | 16             | 3              | 11.2209             | 1.8405                             |
| 0.5381        | 7.0   | 210  | 0.9565          | 0.8948         | 0.8962      | 0.8951        | 6.8209             | 16             | 2              | 11.1043             | 1.3497                             |
| 0.4899        | 8.0   | 240  | 0.9812          | 0.8956         | 0.8984      | 0.8966        | 7.0098             | 16             | 2              | 11.2282             | 1.9632                             |
| 0.4528        | 9.0   | 270  | 0.9842          | 0.8954         | 0.8979      | 0.8962        | 6.9791             | 16             | 3              | 11.2773             | 1.7178                             |
| 0.4233        | 10.0  | 300  | 1.0057          | 0.897          | 0.8977      | 0.8969        | 6.8294             | 16             | 2              | 11.0589             | 1.5951                             |
| 0.3971        | 11.0  | 330  | 1.0276          | 0.8967         | 0.8976      | 0.8967        | 6.8761             | 16             | 2              | 11.1411             | 1.1043                             |
| 0.3713        | 12.0  | 360  | 1.0316          | 0.8962         | 0.8958      | 0.8955        | 6.7583             | 16             | 2              | 10.9816             | 1.1043                             |
| 0.3428        | 13.0  | 390  | 1.0775          | 0.898          | 0.8982      | 0.8977        | 6.838              | 16             | 2              | 11.092              | 1.1043                             |
| 0.3256        | 14.0  | 420  | 1.0831          | 0.8987         | 0.8993      | 0.8985        | 6.8552             | 16             | 2              | 11.1141             | 1.227                              |
| 0.3116        | 15.0  | 450  | 1.0982          | 0.8979         | 0.899       | 0.898         | 6.8638             | 16             | 2              | 11.119              | 1.1043                             |
| 0.2958        | 16.0  | 480  | 1.1273          | 0.8965         | 0.8991      | 0.8974        | 6.9546             | 16             | 3              | 11.238              | 1.5951                             |
| 0.2838        | 17.0  | 510  | 1.1205          | 0.8984         | 0.9003      | 0.8989        | 6.9583             | 16             | 3              | 11.227              | 1.4724                             |
| 0.2683        | 18.0  | 540  | 1.1435          | 0.8978         | 0.8991      | 0.898         | 6.8847             | 16             | 2              | 11.1178             | 1.227                              |
| 0.2594        | 19.0  | 570  | 1.1495          | 0.899          | 0.8986      | 0.8983        | 6.7939             | 16             | 2              | 11.0307             | 0.8589                             |
| 0.2522        | 20.0  | 600  | 1.1621          | 0.8993         | 0.8992      | 0.8988        | 6.7767             | 16             | 3              | 11.0294             | 0.7362                             |
| 0.2457        | 21.0  | 630  | 1.1693          | 0.8991         | 0.9017      | 0.9           | 6.9006             | 16             | 3              | 11.2                | 0.9816                             |
| 0.2442        | 22.0  | 660  | 1.1728          | 0.8986         | 0.9008      | 0.8992        | 6.8773             | 16             | 3              | 11.1644             | 0.9816                             |
| 0.235         | 23.0  | 690  | 1.1740          | 0.8986         | 0.9002      | 0.899         | 6.8564             | 16             | 3              | 11.1178             | 0.9816                             |
| 0.2319        | 24.0  | 720  | 1.1751          | 0.8995         | 0.9008      | 0.8997        | 6.8417             | 16             | 3              | 11.0908             | 0.9816                             |
| 0.2315        | 25.0  | 750  | 1.1772          | 0.8996         | 0.9009      | 0.8998        | 6.8393             | 16             | 3              | 11.092              | 0.9816                             |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3