--- language: - ymr license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: leenag/Malasar_Dict results: [] --- # leenag/Malasar_Dict This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Spoken Bible Corpus: Malasar dataset. It achieves the following results on the evaluation set: - Loss: 0.0139 - Wer: 7.6014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.042 | 0.6410 | 250 | 0.0392 | 18.1869 | | 0.023 | 1.2821 | 500 | 0.0318 | 14.5833 | | 0.0158 | 1.9231 | 750 | 0.0215 | 10.5293 | | 0.0106 | 2.5641 | 1000 | 0.0175 | 11.5428 | | 0.0035 | 3.2051 | 1250 | 0.0145 | 7.5450 | | 0.0027 | 3.8462 | 1500 | 0.0139 | 9.1779 | | 0.0018 | 4.4872 | 1750 | 0.0144 | 7.5450 | | 0.0016 | 5.1282 | 2000 | 0.0139 | 7.6014 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.0 - Tokenizers 0.19.1