Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 257.76 +/- 24.01
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd2709a88b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd2709a8940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd2709a89d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd2709a8a60>", "_build": "<function ActorCriticPolicy._build at 0x7fd2709a8af0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd2709a8b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd2709a8c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd2709a8ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd2709a8d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd2709a8dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd2709a8e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd2709a8ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd2709a29f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674697868049831046, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACYU7u2knS8FaTpPEy3or1rkby71LY+vQAAgD8AAIA/ZnK8vEAz6z7Lp2o9ZYeQvmCqmjvBxES9AAAAAAAAAABNr7q9KYwqur3Itjk9c/81rqz0umKN2bgAAAAAAACAP5rRDrzD6Wa6YlbLNs7tPTLlG6i4KOfwtQAAgD8AAIA/8xaxvrxt3j7SBlU+UdlIvoNq77x482o9AAAAAAAAAADNzNy3/5mgP3nIPTuP3Ly+WYh5PLo7Aj0AAAAAAAAAAHP2Qj6XUyY/dfVRvotvu75vZII8qy5jPQAAAAAAAAAAQIJ/vtlYsD/hVw2/dx7qvonvb7443uG9AAAAAAAAAACaq9Y8EC6sP/M1Bz4c30m+x4IcPS3Rhj0AAAAAAAAAAJoEMz7RdYc/0iUyvXMns74sX/c9oNfavQAAAAAAAAAAZq+NvClofrpeHQiyVA/6ME6BrDqqdAIyAACAPwAAgD9Ad/k9UrDJuWCBJroXtC+27yzRuhVeQzkAAIA/AACAPwB8Az3rlpc9ivZIvGowJL7JwrA8/RjVuwAAAAAAAAAATQiRPcOJJLpLdca4gKKrs0p5E7rT4us3AACAPwAAgD8GNhU+abgYP1kYMr7RspS+hly1PBaSFr0AAAAAAAAAACD3PL6DYd4++kZcPlXrg74iNhy7yMxuvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXYb/dIMZcUCUhpRSlIwBbJRNjgGMAXSUR0CRO4fV7Qb/dX2UKGgGaAloD0MIYD3uWy39YkCUhpRSlGgVTegDaBZHQJFAo6Mir1d1fZQoaAZoCWgPQwg6I0p7g/BgQJSGlFKUaBVN6ANoFkdAkUVBhhH9WXV9lChoBmgJaA9DCNBhvrwAT21AlIaUUpRoFU1bA2gWR0CRSLvgWJrMdX2UKGgGaAloD0MIU1vqIK/WXkCUhpRSlGgVTegDaBZHQJFJRTrE9+x1fZQoaAZoCWgPQwgWFAZlGjBsQJSGlFKUaBVNygJoFkdAkVA+UyHmBHV9lChoBmgJaA9DCGt9kdAWBnBAlIaUUpRoFU3KAmgWR0CRUFecQRPHdX2UKGgGaAloD0MI0XgiiHMMZkCUhpRSlGgVTegDaBZHQJFTgR02cax1fZQoaAZoCWgPQwgY7fFCulVuQJSGlFKUaBVNfAFoFkdAkVO0uQIUrXV9lChoBmgJaA9DCJwWvOir+GVAlIaUUpRoFU3oA2gWR0CRVKJ/XoTxdX2UKGgGaAloD0MIzF62nbaUY0CUhpRSlGgVTegDaBZHQJFWWN6w+t91fZQoaAZoCWgPQwhgArfuZiFkQJSGlFKUaBVN6ANoFkdAkVZ30f5k9XV9lChoBmgJaA9DCHl4z4FlZWVAlIaUUpRoFU3oA2gWR0CRW2P+n62wdX2UKGgGaAloD0MIeJYgIyB6ckCUhpRSlGgVTVsDaBZHQJFdfXarWAh1fZQoaAZoCWgPQwhGfZI7bHFmQJSGlFKUaBVN6ANoFkdAkWCDvAoG6nV9lChoBmgJaA9DCFYsflNYRmlAlIaUUpRoFU3oA2gWR0CRdD5fdAPedX2UKGgGaAloD0MI422l1+akckCUhpRSlGgVTRECaBZHQJF1B+nZTQ51fZQoaAZoCWgPQwj/ykqTEktwQJSGlFKUaBVNjwJoFkdAkXexwMpgC3V9lChoBmgJaA9DCHNjesKSRWNAlIaUUpRoFU3oA2gWR0CRejDXOGCadX2UKGgGaAloD0MInFPJAJCxckCUhpRSlGgVTWMBaBZHQJGAk3T/hl11fZQoaAZoCWgPQwgG19zR/9tlQJSGlFKUaBVN6ANoFkdAkYCib6P8ynV9lChoBmgJaA9DCEPJ5NROT3JAlIaUUpRoFU2JAmgWR0CRhzjGT9sKdX2UKGgGaAloD0MIaHdIMcBCcECUhpRSlGgVTZwCaBZHQJGJxxFRYRx1fZQoaAZoCWgPQwgQecvVTzxwQJSGlFKUaBVN0wFoFkdAkY4TjaPCEnV9lChoBmgJaA9DCP/r3LQZi3JAlIaUUpRoFU3xAWgWR0CRjoU/wAlwdX2UKGgGaAloD0MIjIaMRymzY0CUhpRSlGgVTegDaBZHQJGOlkWhysF1fZQoaAZoCWgPQwiH+IctPaZuQJSGlFKUaBVNEQJoFkdAkZUGsRxtHnV9lChoBmgJaA9DCGxfQC9cNXJAlIaUUpRoFU3eA2gWR0CRloMsH0K7dX2UKGgGaAloD0MIkx0bgXhcYECUhpRSlGgVTegDaBZHQJGXHwtrbg11fZQoaAZoCWgPQwjBxYoazFpwQJSGlFKUaBVNRAFoFkdAkZkBf4REnnV9lChoBmgJaA9DCN6Th4VabmJAlIaUUpRoFU3oA2gWR0CRmoDEWIoFdX2UKGgGaAloD0MI+6wyU9okbkCUhpRSlGgVTbYCaBZHQJGazBwdbPh1fZQoaAZoCWgPQwiGj4gpkShAQJSGlFKUaBVNAgFoFkdAkZvOIqLCN3V9lChoBmgJaA9DCExvfy4aeGdAlIaUUpRoFU3oA2gWR0CRnSYzSCvpdX2UKGgGaAloD0MIAB+8dumnZkCUhpRSlGgVTegDaBZHQJGdQJHAh0R1fZQoaAZoCWgPQwjRBmADojRsQJSGlFKUaBVNlAFoFkdAkZ5ukP+XJHV9lChoBmgJaA9DCC+kw0MYil1AlIaUUpRoFU3oA2gWR0CRo2q1w5vMdX2UKGgGaAloD0MI5NcPsYF5cECUhpRSlGgVTbUBaBZHQJG91vZRKpV1fZQoaAZoCWgPQwi0HykiQ9hxQJSGlFKUaBVNzgFoFkdAkb6Y0ygwoXV9lChoBmgJaA9DCLB2FOeoimJAlIaUUpRoFU3oA2gWR0CRwDZjhDPXdX2UKGgGaAloD0MIrYia6PPNb0CUhpRSlGgVTdQDaBZHQJHFs7muDBd1fZQoaAZoCWgPQwidDmQ9NU9mQJSGlFKUaBVN6ANoFkdAkcbZprULD3V9lChoBmgJaA9DCIxppnsdLHJAlIaUUpRoFU0DA2gWR0CRxy163RXwdX2UKGgGaAloD0MIxvoGJneqckCUhpRSlGgVTd8BaBZHQJHHbIU8FIN1fZQoaAZoCWgPQwiDaK1o8/JsQJSGlFKUaBVNDwJoFkdAkcgw97ngYXV9lChoBmgJaA9DCExvfy4a+m9AlIaUUpRoFU1FAmgWR0CRyUYHgP3BdX2UKGgGaAloD0MIF7ZmK69zbUCUhpRSlGgVTa0CaBZHQJHMoW1twaR1fZQoaAZoCWgPQwg3/6868hZxQJSGlFKUaBVNlAJoFkdAkc0pLAYYSHV9lChoBmgJaA9DCPt0PGYglHBAlIaUUpRoFU3yAWgWR0CRz0hGYrrgdX2UKGgGaAloD0MIbOhmf6BOcUCUhpRSlGgVTVEBaBZHQJHPdRUFSsN1fZQoaAZoCWgPQwhkzjP2ZVFxQJSGlFKUaBVNsQNoFkdAkc91b3XZoXV9lChoBmgJaA9DCFLt0/GYk2xAlIaUUpRoFU1UAWgWR0CR0N08NhE0dX2UKGgGaAloD0MIXFX2XRHhbUCUhpRSlGgVTTgBaBZHQJHT9h2GIsR1fZQoaAZoCWgPQwjXag97YZBwQJSGlFKUaBVNBANoFkdAkdX59JBgNXV9lChoBmgJaA9DCP34S4v6UmBAlIaUUpRoFU3oA2gWR0CR1xlrM1TBdX2UKGgGaAloD0MIv3yyYriIQECUhpRSlGgVTQUBaBZHQJHYHyAhB7h1fZQoaAZoCWgPQwjidf2CXetwQJSGlFKUaBVNYwNoFkdAkdi/r8iwCHV9lChoBmgJaA9DCLRaYI9Jx3JAlIaUUpRoFU0IAmgWR0CR4LFKkEcLdX2UKGgGaAloD0MI1owMctd2cECUhpRSlGgVTVkCaBZHQJHi2m65Gz91fZQoaAZoCWgPQwihurn4W7lwQJSGlFKUaBVN2wFoFkdAkeLp66asqHV9lChoBmgJaA9DCMnlP6Tfam9AlIaUUpRoFU3aAWgWR0CR5VK3uuzQdX2UKGgGaAloD0MI8MNBQhQ7bUCUhpRSlGgVTXADaBZHQJHn/S/j81p1fZQoaAZoCWgPQwgPe6GArdRxQJSGlFKUaBVNGANoFkdAkf4/6CUX53V9lChoBmgJaA9DCBE3p5LB1nBAlIaUUpRoFU2AAmgWR0CR/8aWom5UdX2UKGgGaAloD0MIE7cKYmCfckCUhpRSlGgVTT8DaBZHQJIBNSQ5myx1fZQoaAZoCWgPQwjqB3WRAjFwQJSGlFKUaBVN3gFoFkdAkgIrNB4UvnV9lChoBmgJaA9DCLOY2HzcSHBAlIaUUpRoFU3RAmgWR0CSA1cFQl8gdX2UKGgGaAloD0MIio7k8p8dbUCUhpRSlGgVTSACaBZHQJIDYU7CBPN1fZQoaAZoCWgPQwh1zHnGfhNxQJSGlFKUaBVNVwFoFkdAkgO9E5Qxe3V9lChoBmgJaA9DCEbT2clgkm9AlIaUUpRoFU2cAmgWR0CSBVvgWJrMdX2UKGgGaAloD0MI1c3F33aOb0CUhpRSlGgVTWwBaBZHQJIGCTq0MPV1fZQoaAZoCWgPQwiTc2IPbRBnQJSGlFKUaBVN6ANoFkdAkgbfMSsbN3V9lChoBmgJaA9DCKgBg6TPSG9AlIaUUpRoFU2yAWgWR0CSCJ6tT1kEdX2UKGgGaAloD0MIvmplwi/9cECUhpRSlGgVTVABaBZHQJII8BV+7UZ1fZQoaAZoCWgPQwhgVijSfR1tQJSGlFKUaBVNvgJoFkdAkgojEBKcu3V9lChoBmgJaA9DCCeJJeXuA29AlIaUUpRoFU1wAWgWR0CSDTC9h7VsdX2UKGgGaAloD0MIlwFnKdlIYkCUhpRSlGgVTegDaBZHQJIPs7KaG6B1fZQoaAZoCWgPQwjRPesarV9wQJSGlFKUaBVNWwFoFkdAkg/4v38GcHV9lChoBmgJaA9DCPZcpiaB+3BAlIaUUpRoFU1NAWgWR0CSEJCBPKuCdX2UKGgGaAloD0MInFHzVfLEbkCUhpRSlGgVTakDaBZHQJISCg5BC2N1fZQoaAZoCWgPQwgyrOKNzKlwQJSGlFKUaBVNiQFoFkdAkhOoN7SiNHV9lChoBmgJaA9DCNLI5xXPKW9AlIaUUpRoFU2aAWgWR0CSE/crAgxKdX2UKGgGaAloD0MIGXJsPcPAcECUhpRSlGgVTeEBaBZHQJIU7FrEcbR1fZQoaAZoCWgPQwh55uWwe11uQJSGlFKUaBVNSwJoFkdAkhgvixVyWHV9lChoBmgJaA9DCH+8V63MUXFAlIaUUpRoFU3RAWgWR0CSGIexfOUudX2UKGgGaAloD0MIQQ+1bZi/ckCUhpRSlGgVTaoBaBZHQJIYmtCAtnR1fZQoaAZoCWgPQwj7yoP0FC5wQJSGlFKUaBVNogFoFkdAkhofRNRFZ3V9lChoBmgJaA9DCNmxEYiXwXFAlIaUUpRoFU0sA2gWR0CSGohrFfiQdX2UKGgGaAloD0MIBOYhU35wcECUhpRSlGgVTZcBaBZHQJIbV03fhuR1fZQoaAZoCWgPQwgR5KCEGShtQJSGlFKUaBVNTgFoFkdAkh6E+s5n13V9lChoBmgJaA9DCEyln3B2dHJAlIaUUpRoFU09AWgWR0CSH0pUPxx2dX2UKGgGaAloD0MIQ3QIHAmecECUhpRSlGgVTaQBaBZHQJIh0kiUxEh1fZQoaAZoCWgPQwjFH0WdueFDQJSGlFKUaBVL7WgWR0CSIpBv73wkdX2UKGgGaAloD0MILEZda28JbUCUhpRSlGgVTWQBaBZHQJIi/QkX1rZ1fZQoaAZoCWgPQwjReY1domJuQJSGlFKUaBVNUwFoFkdAkiNMDr7fpHV9lChoBmgJaA9DCJCjObKyNHFAlIaUUpRoFU16AmgWR0CSI7l9BrvcdX2UKGgGaAloD0MIfSHkvD9jcECUhpRSlGgVTVEBaBZHQJImJk3CKrJ1fZQoaAZoCWgPQwjsa11qRHtxQJSGlFKUaBVNHgNoFkdAkicIGMXJo3V9lChoBmgJaA9DCN154jlbKnBAlIaUUpRoFU0vAWgWR0CSJyixFAmidX2UKGgGaAloD0MIM6g2OBFRb0CUhpRSlGgVTesBaBZHQJIn+za9K291ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1084a3b9e12c0ce1b81e83bc91e88cfe05998819f0423fda193380027c6ca33d
|
3 |
+
size 147424
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd2709a88b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd2709a8940>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd2709a89d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd2709a8a60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd2709a8af0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd2709a8b80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd2709a8c10>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd2709a8ca0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd2709a8d30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd2709a8dc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd2709a8e50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd2709a8ee0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fd2709a29f0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1674697868049831046,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACYU7u2knS8FaTpPEy3or1rkby71LY+vQAAgD8AAIA/ZnK8vEAz6z7Lp2o9ZYeQvmCqmjvBxES9AAAAAAAAAABNr7q9KYwqur3Itjk9c/81rqz0umKN2bgAAAAAAACAP5rRDrzD6Wa6YlbLNs7tPTLlG6i4KOfwtQAAgD8AAIA/8xaxvrxt3j7SBlU+UdlIvoNq77x482o9AAAAAAAAAADNzNy3/5mgP3nIPTuP3Ly+WYh5PLo7Aj0AAAAAAAAAAHP2Qj6XUyY/dfVRvotvu75vZII8qy5jPQAAAAAAAAAAQIJ/vtlYsD/hVw2/dx7qvonvb7443uG9AAAAAAAAAACaq9Y8EC6sP/M1Bz4c30m+x4IcPS3Rhj0AAAAAAAAAAJoEMz7RdYc/0iUyvXMns74sX/c9oNfavQAAAAAAAAAAZq+NvClofrpeHQiyVA/6ME6BrDqqdAIyAACAPwAAgD9Ad/k9UrDJuWCBJroXtC+27yzRuhVeQzkAAIA/AACAPwB8Az3rlpc9ivZIvGowJL7JwrA8/RjVuwAAAAAAAAAATQiRPcOJJLpLdca4gKKrs0p5E7rT4us3AACAPwAAgD8GNhU+abgYP1kYMr7RspS+hly1PBaSFr0AAAAAAAAAACD3PL6DYd4++kZcPlXrg74iNhy7yMxuvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXYb/dIMZcUCUhpRSlIwBbJRNjgGMAXSUR0CRO4fV7Qb/dX2UKGgGaAloD0MIYD3uWy39YkCUhpRSlGgVTegDaBZHQJFAo6Mir1d1fZQoaAZoCWgPQwg6I0p7g/BgQJSGlFKUaBVN6ANoFkdAkUVBhhH9WXV9lChoBmgJaA9DCNBhvrwAT21AlIaUUpRoFU1bA2gWR0CRSLvgWJrMdX2UKGgGaAloD0MIU1vqIK/WXkCUhpRSlGgVTegDaBZHQJFJRTrE9+x1fZQoaAZoCWgPQwgWFAZlGjBsQJSGlFKUaBVNygJoFkdAkVA+UyHmBHV9lChoBmgJaA9DCGt9kdAWBnBAlIaUUpRoFU3KAmgWR0CRUFecQRPHdX2UKGgGaAloD0MI0XgiiHMMZkCUhpRSlGgVTegDaBZHQJFTgR02cax1fZQoaAZoCWgPQwgY7fFCulVuQJSGlFKUaBVNfAFoFkdAkVO0uQIUrXV9lChoBmgJaA9DCJwWvOir+GVAlIaUUpRoFU3oA2gWR0CRVKJ/XoTxdX2UKGgGaAloD0MIzF62nbaUY0CUhpRSlGgVTegDaBZHQJFWWN6w+t91fZQoaAZoCWgPQwhgArfuZiFkQJSGlFKUaBVN6ANoFkdAkVZ30f5k9XV9lChoBmgJaA9DCHl4z4FlZWVAlIaUUpRoFU3oA2gWR0CRW2P+n62wdX2UKGgGaAloD0MIeJYgIyB6ckCUhpRSlGgVTVsDaBZHQJFdfXarWAh1fZQoaAZoCWgPQwhGfZI7bHFmQJSGlFKUaBVN6ANoFkdAkWCDvAoG6nV9lChoBmgJaA9DCFYsflNYRmlAlIaUUpRoFU3oA2gWR0CRdD5fdAPedX2UKGgGaAloD0MI422l1+akckCUhpRSlGgVTRECaBZHQJF1B+nZTQ51fZQoaAZoCWgPQwj/ykqTEktwQJSGlFKUaBVNjwJoFkdAkXexwMpgC3V9lChoBmgJaA9DCHNjesKSRWNAlIaUUpRoFU3oA2gWR0CRejDXOGCadX2UKGgGaAloD0MInFPJAJCxckCUhpRSlGgVTWMBaBZHQJGAk3T/hl11fZQoaAZoCWgPQwgG19zR/9tlQJSGlFKUaBVN6ANoFkdAkYCib6P8ynV9lChoBmgJaA9DCEPJ5NROT3JAlIaUUpRoFU2JAmgWR0CRhzjGT9sKdX2UKGgGaAloD0MIaHdIMcBCcECUhpRSlGgVTZwCaBZHQJGJxxFRYRx1fZQoaAZoCWgPQwgQecvVTzxwQJSGlFKUaBVN0wFoFkdAkY4TjaPCEnV9lChoBmgJaA9DCP/r3LQZi3JAlIaUUpRoFU3xAWgWR0CRjoU/wAlwdX2UKGgGaAloD0MIjIaMRymzY0CUhpRSlGgVTegDaBZHQJGOlkWhysF1fZQoaAZoCWgPQwiH+IctPaZuQJSGlFKUaBVNEQJoFkdAkZUGsRxtHnV9lChoBmgJaA9DCGxfQC9cNXJAlIaUUpRoFU3eA2gWR0CRloMsH0K7dX2UKGgGaAloD0MIkx0bgXhcYECUhpRSlGgVTegDaBZHQJGXHwtrbg11fZQoaAZoCWgPQwjBxYoazFpwQJSGlFKUaBVNRAFoFkdAkZkBf4REnnV9lChoBmgJaA9DCN6Th4VabmJAlIaUUpRoFU3oA2gWR0CRmoDEWIoFdX2UKGgGaAloD0MI+6wyU9okbkCUhpRSlGgVTbYCaBZHQJGazBwdbPh1fZQoaAZoCWgPQwiGj4gpkShAQJSGlFKUaBVNAgFoFkdAkZvOIqLCN3V9lChoBmgJaA9DCExvfy4aeGdAlIaUUpRoFU3oA2gWR0CRnSYzSCvpdX2UKGgGaAloD0MIAB+8dumnZkCUhpRSlGgVTegDaBZHQJGdQJHAh0R1fZQoaAZoCWgPQwjRBmADojRsQJSGlFKUaBVNlAFoFkdAkZ5ukP+XJHV9lChoBmgJaA9DCC+kw0MYil1AlIaUUpRoFU3oA2gWR0CRo2q1w5vMdX2UKGgGaAloD0MI5NcPsYF5cECUhpRSlGgVTbUBaBZHQJG91vZRKpV1fZQoaAZoCWgPQwi0HykiQ9hxQJSGlFKUaBVNzgFoFkdAkb6Y0ygwoXV9lChoBmgJaA9DCLB2FOeoimJAlIaUUpRoFU3oA2gWR0CRwDZjhDPXdX2UKGgGaAloD0MIrYia6PPNb0CUhpRSlGgVTdQDaBZHQJHFs7muDBd1fZQoaAZoCWgPQwidDmQ9NU9mQJSGlFKUaBVN6ANoFkdAkcbZprULD3V9lChoBmgJaA9DCIxppnsdLHJAlIaUUpRoFU0DA2gWR0CRxy163RXwdX2UKGgGaAloD0MIxvoGJneqckCUhpRSlGgVTd8BaBZHQJHHbIU8FIN1fZQoaAZoCWgPQwiDaK1o8/JsQJSGlFKUaBVNDwJoFkdAkcgw97ngYXV9lChoBmgJaA9DCExvfy4a+m9AlIaUUpRoFU1FAmgWR0CRyUYHgP3BdX2UKGgGaAloD0MIF7ZmK69zbUCUhpRSlGgVTa0CaBZHQJHMoW1twaR1fZQoaAZoCWgPQwg3/6868hZxQJSGlFKUaBVNlAJoFkdAkc0pLAYYSHV9lChoBmgJaA9DCPt0PGYglHBAlIaUUpRoFU3yAWgWR0CRz0hGYrrgdX2UKGgGaAloD0MIbOhmf6BOcUCUhpRSlGgVTVEBaBZHQJHPdRUFSsN1fZQoaAZoCWgPQwhkzjP2ZVFxQJSGlFKUaBVNsQNoFkdAkc91b3XZoXV9lChoBmgJaA9DCFLt0/GYk2xAlIaUUpRoFU1UAWgWR0CR0N08NhE0dX2UKGgGaAloD0MIXFX2XRHhbUCUhpRSlGgVTTgBaBZHQJHT9h2GIsR1fZQoaAZoCWgPQwjXag97YZBwQJSGlFKUaBVNBANoFkdAkdX59JBgNXV9lChoBmgJaA9DCP34S4v6UmBAlIaUUpRoFU3oA2gWR0CR1xlrM1TBdX2UKGgGaAloD0MIv3yyYriIQECUhpRSlGgVTQUBaBZHQJHYHyAhB7h1fZQoaAZoCWgPQwjidf2CXetwQJSGlFKUaBVNYwNoFkdAkdi/r8iwCHV9lChoBmgJaA9DCLRaYI9Jx3JAlIaUUpRoFU0IAmgWR0CR4LFKkEcLdX2UKGgGaAloD0MI1owMctd2cECUhpRSlGgVTVkCaBZHQJHi2m65Gz91fZQoaAZoCWgPQwihurn4W7lwQJSGlFKUaBVN2wFoFkdAkeLp66asqHV9lChoBmgJaA9DCMnlP6Tfam9AlIaUUpRoFU3aAWgWR0CR5VK3uuzQdX2UKGgGaAloD0MI8MNBQhQ7bUCUhpRSlGgVTXADaBZHQJHn/S/j81p1fZQoaAZoCWgPQwgPe6GArdRxQJSGlFKUaBVNGANoFkdAkf4/6CUX53V9lChoBmgJaA9DCBE3p5LB1nBAlIaUUpRoFU2AAmgWR0CR/8aWom5UdX2UKGgGaAloD0MIE7cKYmCfckCUhpRSlGgVTT8DaBZHQJIBNSQ5myx1fZQoaAZoCWgPQwjqB3WRAjFwQJSGlFKUaBVN3gFoFkdAkgIrNB4UvnV9lChoBmgJaA9DCLOY2HzcSHBAlIaUUpRoFU3RAmgWR0CSA1cFQl8gdX2UKGgGaAloD0MIio7k8p8dbUCUhpRSlGgVTSACaBZHQJIDYU7CBPN1fZQoaAZoCWgPQwh1zHnGfhNxQJSGlFKUaBVNVwFoFkdAkgO9E5Qxe3V9lChoBmgJaA9DCEbT2clgkm9AlIaUUpRoFU2cAmgWR0CSBVvgWJrMdX2UKGgGaAloD0MI1c3F33aOb0CUhpRSlGgVTWwBaBZHQJIGCTq0MPV1fZQoaAZoCWgPQwiTc2IPbRBnQJSGlFKUaBVN6ANoFkdAkgbfMSsbN3V9lChoBmgJaA9DCKgBg6TPSG9AlIaUUpRoFU2yAWgWR0CSCJ6tT1kEdX2UKGgGaAloD0MIvmplwi/9cECUhpRSlGgVTVABaBZHQJII8BV+7UZ1fZQoaAZoCWgPQwhgVijSfR1tQJSGlFKUaBVNvgJoFkdAkgojEBKcu3V9lChoBmgJaA9DCCeJJeXuA29AlIaUUpRoFU1wAWgWR0CSDTC9h7VsdX2UKGgGaAloD0MIlwFnKdlIYkCUhpRSlGgVTegDaBZHQJIPs7KaG6B1fZQoaAZoCWgPQwjRPesarV9wQJSGlFKUaBVNWwFoFkdAkg/4v38GcHV9lChoBmgJaA9DCPZcpiaB+3BAlIaUUpRoFU1NAWgWR0CSEJCBPKuCdX2UKGgGaAloD0MInFHzVfLEbkCUhpRSlGgVTakDaBZHQJISCg5BC2N1fZQoaAZoCWgPQwgyrOKNzKlwQJSGlFKUaBVNiQFoFkdAkhOoN7SiNHV9lChoBmgJaA9DCNLI5xXPKW9AlIaUUpRoFU2aAWgWR0CSE/crAgxKdX2UKGgGaAloD0MIGXJsPcPAcECUhpRSlGgVTeEBaBZHQJIU7FrEcbR1fZQoaAZoCWgPQwh55uWwe11uQJSGlFKUaBVNSwJoFkdAkhgvixVyWHV9lChoBmgJaA9DCH+8V63MUXFAlIaUUpRoFU3RAWgWR0CSGIexfOUudX2UKGgGaAloD0MIQQ+1bZi/ckCUhpRSlGgVTaoBaBZHQJIYmtCAtnR1fZQoaAZoCWgPQwj7yoP0FC5wQJSGlFKUaBVNogFoFkdAkhofRNRFZ3V9lChoBmgJaA9DCNmxEYiXwXFAlIaUUpRoFU0sA2gWR0CSGohrFfiQdX2UKGgGaAloD0MIBOYhU35wcECUhpRSlGgVTZcBaBZHQJIbV03fhuR1fZQoaAZoCWgPQwgR5KCEGShtQJSGlFKUaBVNTgFoFkdAkh6E+s5n13V9lChoBmgJaA9DCEyln3B2dHJAlIaUUpRoFU09AWgWR0CSH0pUPxx2dX2UKGgGaAloD0MIQ3QIHAmecECUhpRSlGgVTaQBaBZHQJIh0kiUxEh1fZQoaAZoCWgPQwjFH0WdueFDQJSGlFKUaBVL7WgWR0CSIpBv73wkdX2UKGgGaAloD0MILEZda28JbUCUhpRSlGgVTWQBaBZHQJIi/QkX1rZ1fZQoaAZoCWgPQwjReY1domJuQJSGlFKUaBVNUwFoFkdAkiNMDr7fpHV9lChoBmgJaA9DCJCjObKyNHFAlIaUUpRoFU16AmgWR0CSI7l9BrvcdX2UKGgGaAloD0MIfSHkvD9jcECUhpRSlGgVTVEBaBZHQJImJk3CKrJ1fZQoaAZoCWgPQwjsa11qRHtxQJSGlFKUaBVNHgNoFkdAkicIGMXJo3V9lChoBmgJaA9DCN154jlbKnBAlIaUUpRoFU0vAWgWR0CSJyixFAmidX2UKGgGaAloD0MIM6g2OBFRb0CUhpRSlGgVTesBaBZHQJIn+za9K291ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:025b1d29ae58334444a430ed0b8802bf54ca882e74e7ef1a4f56caccdf445f80
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43b5063d723c98245a60dba93e3d4e5e8a8f79b092c0df3cd3caa0ad8f10a77a
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (225 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 257.7572678334615, "std_reward": 24.006324289826626, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-26T02:31:07.644751"}
|