--- license: apache-2.0 tags: - generated_from_keras_callback base_model: hfl/chinese-roberta-wwm-ext model-index: - name: celera_relevance results: [] --- # celera_relevance This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3072 - Train Sparse Categorical Accuracy: 0.8813 - Validation Loss: 0.4371 - Validation Sparse Categorical Accuracy: 0.8295 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| | 0.4060 | 0.8274 | 0.3665 | 0.8440 | 0 | | 0.3388 | 0.8594 | 0.3639 | 0.8585 | 1 | | 0.3072 | 0.8813 | 0.4371 | 0.8295 | 2 | ### Framework versions - Transformers 4.16.0 - TensorFlow 2.7.0 - Datasets 1.18.1 - Tokenizers 0.11.0