File size: 1,753 Bytes
3b0b5a3
 
 
 
cb7eddc
3b0b5a3
 
 
 
 
 
 
 
 
 
 
 
9b87a96
 
 
 
 
3b0b5a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b87a96
 
3b0b5a3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: apache-2.0
tags:
- generated_from_keras_callback
base_model: hfl/chinese-roberta-wwm-ext
model-index:
- name: market_positivity
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# market_positivity

This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.4959
- Train Sparse Categorical Accuracy: 0.8060
- Validation Loss: 0.4484
- Validation Sparse Categorical Accuracy: 0.8187
- Epoch: 1

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch |
|:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:|
| 0.6595     | 0.7184                            | 0.5732          | 0.7479                                 | 0     |
| 0.4959     | 0.8060                            | 0.4484          | 0.8187                                 | 1     |


### Framework versions

- Transformers 4.16.0
- TensorFlow 2.7.0
- Datasets 1.18.1
- Tokenizers 0.11.0