File size: 11,942 Bytes
073c67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
llama_model_loader: loaded meta data with 34 key-value pairs and 642 tensors from c4ai-command-r-plus-08-2024-IMat-GGUF/c4ai-command-r-plus-08-2024.Q8_0.gguf.hardlink.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = command-r
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = C4Ai Command R Plus 08 2024
llama_model_loader: - kv   3:                            general.version str              = 08-2024
llama_model_loader: - kv   4:                           general.basename str              = c4ai-command-r-plus
llama_model_loader: - kv   5:                         general.size_label str              = 104B
llama_model_loader: - kv   6:                            general.license str              = cc-by-nc-4.0
llama_model_loader: - kv   7:                          general.languages arr[str,10]      = ["en", "fr", "de", "es", "it", "pt", ...
llama_model_loader: - kv   8:                      command-r.block_count u32              = 64
llama_model_loader: - kv   9:                   command-r.context_length u32              = 131072
llama_model_loader: - kv  10:                 command-r.embedding_length u32              = 12288
llama_model_loader: - kv  11:              command-r.feed_forward_length u32              = 33792
llama_model_loader: - kv  12:             command-r.attention.head_count u32              = 96
llama_model_loader: - kv  13:          command-r.attention.head_count_kv u32              = 8
llama_model_loader: - kv  14:                   command-r.rope.freq_base f32              = 8000000.000000
llama_model_loader: - kv  15:     command-r.attention.layer_norm_epsilon f32              = 0.000010
llama_model_loader: - kv  16:                          general.file_type u32              = 7
llama_model_loader: - kv  17:                      command-r.logit_scale f32              = 0.833333
llama_model_loader: - kv  18:                command-r.rope.scaling.type str              = none
llama_model_loader: - kv  19:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  20:                         tokenizer.ggml.pre str              = command-r
llama_model_loader: - kv  21:                      tokenizer.ggml.tokens arr[str,256000]  = ["<PAD>", "<UNK>", "<CLS>", "<SEP>", ...
llama_model_loader: - kv  22:                  tokenizer.ggml.token_type arr[i32,256000]  = [3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, ...
llama_model_loader: - kv  23:                      tokenizer.ggml.merges arr[str,253333]  = ["Ġ Ġ", "Ġ t", "e r", "i n", "Ġ a...
llama_model_loader: - kv  24:                tokenizer.ggml.bos_token_id u32              = 5
llama_model_loader: - kv  25:                tokenizer.ggml.eos_token_id u32              = 255001
llama_model_loader: - kv  26:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  27:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  28:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  29:           tokenizer.chat_template.tool_use str              = {{ bos_token }}{% if messages[0]['rol...
llama_model_loader: - kv  30:                tokenizer.chat_template.rag str              = {{ bos_token }}{% if messages[0]['rol...
llama_model_loader: - kv  31:                   tokenizer.chat_templates arr[str,2]       = ["rag", "tool_use"]
llama_model_loader: - kv  32:                    tokenizer.chat_template str              = {{ bos_token }}{% if messages[0]['rol...
llama_model_loader: - kv  33:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:  193 tensors
llama_model_loader: - type q8_0:  449 tensors
llm_load_vocab: special tokens cache size = 37
llm_load_vocab: token to piece cache size = 1.8426 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = command-r
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 256000
llm_load_print_meta: n_merges         = 253333
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 131072
llm_load_print_meta: n_embd           = 12288
llm_load_print_meta: n_layer          = 64
llm_load_print_meta: n_head           = 96
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 12
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 1.0e-05
llm_load_print_meta: f_norm_rms_eps   = 0.0e+00
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 8.3e-01
llm_load_print_meta: n_ff             = 33792
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = none
llm_load_print_meta: freq_base_train  = 8000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 131072
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = ?B
llm_load_print_meta: model ftype      = Q8_0
llm_load_print_meta: model params     = 103.81 B
llm_load_print_meta: model size       = 102.73 GiB (8.50 BPW) 
llm_load_print_meta: general.name     = C4Ai Command R Plus 08 2024
llm_load_print_meta: BOS token        = 5 '<BOS_TOKEN>'
llm_load_print_meta: EOS token        = 255001 '<|END_OF_TURN_TOKEN|>'
llm_load_print_meta: PAD token        = 0 '<PAD>'
llm_load_print_meta: LF token         = 136 'Ä'
llm_load_print_meta: max token length = 1024
ggml_cuda_init: failed to initialize CUDA: no CUDA-capable device is detected
llm_load_tensors: ggml ctx size =    0.29 MiB
llm_load_tensors: offloading 0 repeating layers to GPU
llm_load_tensors: offloaded 0/65 layers to GPU
llm_load_tensors:        CPU buffer size = 105193.80 MiB
.................................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: n_batch    = 512
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base  = 8000000.0
llama_new_context_with_model: freq_scale = 1
ggml_cuda_host_malloc: failed to allocate 128.00 MiB of pinned memory: no CUDA-capable device is detected
llama_kv_cache_init:        CPU KV buffer size =   128.00 MiB
llama_new_context_with_model: KV self size  =  128.00 MiB, K (f16):   64.00 MiB, V (f16):   64.00 MiB
ggml_cuda_host_malloc: failed to allocate 0.98 MiB of pinned memory: no CUDA-capable device is detected
llama_new_context_with_model:        CPU  output buffer size =     0.98 MiB
ggml_cuda_host_malloc: failed to allocate 524.00 MiB of pinned memory: no CUDA-capable device is detected
llama_new_context_with_model:  CUDA_Host compute buffer size =   524.00 MiB
llama_new_context_with_model: graph nodes  = 2312
llama_new_context_with_model: graph splits = 1

system_info: n_threads = 25 (n_threads_batch = 25) / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 
compute_imatrix: tokenizing the input ..
compute_imatrix: tokenization took 123.015 ms
compute_imatrix: computing over 131 chunks with batch_size 512
ggml_cuda_host_malloc: failed to allocate 500.00 MiB of pinned memory: no CUDA-capable device is detected
compute_imatrix: 78.46 seconds per pass - ETA 2 hours 51.28 minutes
[1]4.4754,[2]3.1183,[3]3.0543,[4]3.1257,[5]3.1452,[6]2.9647,[7]3.4957,[8]3.5353,[9]3.9922,
save_imatrix: stored collected data after 10 chunks in c4ai-command-r-plus-08-2024-IMat-GGUF/imatrix.dat
[10]4.2216,[11]3.9264,[12]4.1429,[13]4.5250,[14]4.6989,[15]4.9318,[16]5.0805,[17]5.2660,[18]5.4186,[19]5.2379,
save_imatrix: stored collected data after 20 chunks in c4ai-command-r-plus-08-2024-IMat-GGUF/imatrix.dat
[20]5.0212,[21]4.9701,[22]4.9920,[23]4.8294,[24]5.0542,[25]5.0570,[26]5.2589,[27]5.2103,[28]4.9143,[29]4.6607,
save_imatrix: stored collected data after 30 chunks in c4ai-command-r-plus-08-2024-IMat-GGUF/imatrix.dat
[30]4.6601,[31]4.7309,[32]4.5424,[33]4.3738,[34]4.3251,[35]4.2673,[36]4.2925,[37]4.2917,[38]4.2848,[39]4.3273,
save_imatrix: stored collected data after 40 chunks in c4ai-command-r-plus-08-2024-IMat-GGUF/imatrix.dat
[40]4.4122,[41]4.4935,[42]4.3465,[43]4.2058,[44]4.0749,[45]3.9584,[46]3.9262,[47]3.8954,[48]3.9549,[49]4.0163,
save_imatrix: stored collected data after 50 chunks in c4ai-command-r-plus-08-2024-IMat-GGUF/imatrix.dat
[50]4.0858,[51]4.0439,[52]4.0656,[53]4.0867,[54]4.1515,[55]4.2470,[56]4.3072,[57]4.3630,[58]4.4014,[59]4.4363,
save_imatrix: stored collected data after 60 chunks in c4ai-command-r-plus-08-2024-IMat-GGUF/imatrix.dat
[60]4.4203,[61]4.4170,[62]4.3773,[63]4.3749,[64]4.3988,[65]4.4349,[66]4.4013,[67]4.3903,[68]4.4097,[69]4.4051,
save_imatrix: stored collected data after 70 chunks in c4ai-command-r-plus-08-2024-IMat-GGUF/imatrix.dat
[70]4.4180,[71]4.4311,[72]4.4607,[73]4.4538,[74]4.4846,[75]4.4909,[76]4.4932,[77]4.5091,[78]4.5065,[79]4.4899,
save_imatrix: stored collected data after 80 chunks in c4ai-command-r-plus-08-2024-IMat-GGUF/imatrix.dat
[80]4.4706,[81]4.4935,[82]4.5351,[83]4.5349,[84]4.5360,[85]4.5345,[86]4.5629,[87]4.5248,[88]4.5205,[89]4.5053,
save_imatrix: stored collected data after 90 chunks in c4ai-command-r-plus-08-2024-IMat-GGUF/imatrix.dat
[90]4.5242,[91]4.5545,[92]4.5677,[93]4.5443,[94]4.5248,[95]4.4987,[96]4.4747,[97]4.4548,[98]4.4338,[99]4.4131,
save_imatrix: stored collected data after 100 chunks in c4ai-command-r-plus-08-2024-IMat-GGUF/imatrix.dat
[100]4.3916,[101]4.3931,[102]4.4081,[103]4.4587,[104]4.5047,[105]4.5456,[106]4.5822,[107]4.6470,[108]4.6542,[109]4.6807,
save_imatrix: stored collected data after 110 chunks in c4ai-command-r-plus-08-2024-IMat-GGUF/imatrix.dat
[110]4.6454,[111]4.6548,[112]4.6499,[113]4.6174,[114]4.5733,[115]4.5519,[116]4.5918,[117]4.5904,[118]4.5891,[119]4.6066,
save_imatrix: stored collected data after 120 chunks in c4ai-command-r-plus-08-2024-IMat-GGUF/imatrix.dat
[120]4.6368,[121]4.6489,[122]4.6638,[123]4.6878,[124]4.6952,[125]4.6825,[126]4.6271,[127]4.5741,[128]4.5234,[129]4.4731,
save_imatrix: stored collected data after 130 chunks in c4ai-command-r-plus-08-2024-IMat-GGUF/imatrix.dat
[130]4.4303,[131]4.3841,
save_imatrix: stored collected data after 131 chunks in c4ai-command-r-plus-08-2024-IMat-GGUF/imatrix.dat

llama_print_timings:        load time =   84740.34 ms
llama_print_timings:      sample time =       0.00 ms /     1 runs   (    0.00 ms per token,      inf tokens per second)
llama_print_timings: prompt eval time = 10254664.66 ms / 67072 tokens (  152.89 ms per token,     6.54 tokens per second)
llama_print_timings:        eval time =       0.00 ms /     1 runs   (    0.00 ms per token,      inf tokens per second)
llama_print_timings:       total time = 10263942.91 ms / 67073 tokens

Final estimate: PPL = 4.3841 +/- 0.05239