--- library_name: peft license: mit base_model: unsloth/Phi-3-mini-4k-instruct tags: - axolotl - generated_from_trainer model-index: - name: 52e28122-f13f-42a4-880f-c2813aaf4577 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Phi-3-mini-4k-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2a2f0228484464e3_train_data.json ds_type: json format: custom path: /workspace/input_data/2a2f0228484464e3_train_data.json type: field_input: Case field_instruction: Title field_output: Summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: leixa/52e28122-f13f-42a4-880f-c2813aaf4577 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/2a2f0228484464e3_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 392c1656-b507-42d3-94c2-758a96b60589 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 392c1656-b507-42d3-94c2-758a96b60589 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 52e28122-f13f-42a4-880f-c2813aaf4577 This model is a fine-tuned version of [unsloth/Phi-3-mini-4k-instruct](https://huggingface.co/unsloth/Phi-3-mini-4k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0117 | 1 | 1.4764 | | 5.5911 | 0.1053 | 9 | 1.4501 | | 5.4709 | 0.2105 | 18 | 1.4075 | | 5.2459 | 0.3158 | 27 | 1.3822 | | 4.9181 | 0.4211 | 36 | 1.3653 | | 5.3021 | 0.5263 | 45 | 1.3520 | | 5.485 | 0.6316 | 54 | 1.3432 | | 4.9763 | 0.7368 | 63 | 1.3367 | | 5.1907 | 0.8421 | 72 | 1.3317 | | 5.1936 | 0.9474 | 81 | 1.3289 | | 5.235 | 1.0556 | 90 | 1.3276 | | 5.1551 | 1.1608 | 99 | 1.3275 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1