--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6 tags: - axolotl - generated_from_trainer model-index: - name: 9b0ce33a-0e6b-4448-866c-d786f064ba67 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 652c37adfdba156e_train_data.json ds_type: json format: custom path: /workspace/input_data/652c37adfdba156e_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: leixa/9b0ce33a-0e6b-4448-866c-d786f064ba67 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 500 micro_batch_size: 8 mlflow_experiment_name: /tmp/652c37adfdba156e_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: leixa-personal wandb_mode: online wandb_name: f3658745-2da6-44ad-aeb6-c4275a7f6186 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f3658745-2da6-44ad-aeb6-c4275a7f6186 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 9b0ce33a-0e6b-4448-866c-d786f064ba67 This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v0.6](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3730 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 288 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0104 | 1 | 1.9109 | | 1.6823 | 0.25 | 24 | 1.6583 | | 1.5419 | 0.5 | 48 | 1.5523 | | 1.5028 | 0.75 | 72 | 1.4936 | | 1.4711 | 1.0 | 96 | 1.4529 | | 1.4095 | 1.25 | 120 | 1.4250 | | 1.4025 | 1.5 | 144 | 1.4069 | | 1.3641 | 1.75 | 168 | 1.3919 | | 1.3483 | 2.0 | 192 | 1.3826 | | 1.3427 | 2.25 | 216 | 1.3779 | | 1.3168 | 2.5 | 240 | 1.3749 | | 1.3198 | 2.75 | 264 | 1.3732 | | 1.3255 | 3.0 | 288 | 1.3730 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1