--- library_name: peft license: llama3 base_model: DeepMount00/Llama-3-8b-Ita tags: - axolotl - generated_from_trainer model-index: - name: c76b2303-6112-423a-b63b-a52187fd1208 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: DeepMount00/Llama-3-8b-Ita bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a0eb45ea7cd511f3_train_data.json ds_type: json format: custom path: /workspace/input_data/a0eb45ea7cd511f3_train_data.json type: field_instruction: problem field_output: generated_solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: leixa/c76b2303-6112-423a-b63b-a52187fd1208 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/a0eb45ea7cd511f3_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 1568b38d-5ecd-4474-8507-d4201cbad038 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1568b38d-5ecd-4474-8507-d4201cbad038 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# c76b2303-6112-423a-b63b-a52187fd1208 This model is a fine-tuned version of [DeepMount00/Llama-3-8b-Ita](https://huggingface.co/DeepMount00/Llama-3-8b-Ita) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3354 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0046 | 1 | 0.6414 | | 0.5405 | 0.0418 | 9 | 0.4692 | | 0.4068 | 0.0836 | 18 | 0.3836 | | 0.3729 | 0.1254 | 27 | 0.3581 | | 0.367 | 0.1672 | 36 | 0.3497 | | 0.3725 | 0.2091 | 45 | 0.3450 | | 0.3596 | 0.2509 | 54 | 0.3411 | | 0.3667 | 0.2927 | 63 | 0.3385 | | 0.3153 | 0.3345 | 72 | 0.3367 | | 0.374 | 0.3763 | 81 | 0.3358 | | 0.3375 | 0.4181 | 90 | 0.3354 | | 0.3434 | 0.4599 | 99 | 0.3354 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1